• Title/Summary/Keyword: financial and investment decision

검색결과 176건 처리시간 0.025초

WHICH INFORMATION MOVES PRICES: EVIDENCE FROM DAYS WITH DIVIDEND AND EARNINGS ANNOUNCEMENTS AND INSIDER TRADING

  • Kim, Chan-Wung;Lee, Jae-Ha
    • 재무관리논총
    • /
    • 제3권1호
    • /
    • pp.233-265
    • /
    • 1996
  • We examine the impact of public and private information on price movements using the thirty DJIA stocks and twenty-one NASDAQ stocks. We find that the standard deviation of daily returns on information days (dividend announcement, earnings announcement, insider purchase, or insider sale) is much higher than on no-information days. Both public information matters at the NYSE, probably due to masked identification of insiders. Earnings announcement has the greatest impact for both DJIA and NASDAQ stocks, and there is some evidence of positive impact of insider asle on return volatility of NASDAQ stocks. There has been considerable debate, e.g., French and Roll (1986), over whether market volatility is due to public information or private information-the latter gathered through costly search and only revealed through trading. Public information is composed of (1) marketwide public information such as regularly scheduled federal economic announcements (e.g., employment, GNP, leading indicators) and (2) company-specific public information such as dividend and earnings announcements. Policy makers and corporate insiders have a better access to marketwide private information (e.g., a new monetary policy decision made in the Federal Reserve Board meeting) and company-specific private information, respectively, compated to the general public. Ederington and Lee (1993) show that marketwide public information accounts for most of the observed volatility patterns in interest rate and foreign exchange futures markets. Company-specific public information is explored by Patell and Wolfson (1984) and Jennings and Starks (1985). They show that dividend and earnings announcements induce higher than normal volatility in equity prices. Kyle (1985), Admati and Pfleiderer (1988), Barclay, Litzenberger and Warner (1990), Foster and Viswanathan (1990), Back (1992), and Barclay and Warner (1993) show that the private information help by informed traders and revealed through trading influences market volatility. Cornell and Sirri (1992)' and Meulbroek (1992) investigate the actual insider trading activities in a tender offer case and the prosecuted illegal trading cased, respectively. This paper examines the aggregate and individual impact of marketwide information, company-specific public information, and company-specific private information on equity prices. Specifically, we use the thirty common stocks in the Dow Jones Industrial Average (DJIA) and twenty one National Association of Securities Dealers Automated Quotations (NASDAQ) common stocks to examine how their prices react to information. Marketwide information (public and private) is estimated by the movement in the Standard and Poors (S & P) 500 Index price for the DJIA stocks and the movement in the NASDAQ Composite Index price for the NASDAQ stocks. Divedend and earnings announcements are used as a subset of company-specific public information. The trading activity of corporate insiders (major corporate officers, members of the board of directors, and owners of at least 10 percent of any equity class) with an access to private information can be cannot legally trade on private information. Therefore, most insider transactions are not necessarily based on private information. Nevertheless, we hypothesize that market participants observe how insiders trade in order to infer any information that they cannot possess because insiders tend to buy (sell) when they have good (bad) information about their company. For example, Damodaran and Liu (1993) show that insiders of real estate investment trusts buy (sell) after they receive favorable (unfavorable) appraisal news before the information in these appraisals is released to the public. Price discovery in a competitive multiple-dealership market (NASDAQ) would be different from that in a monopolistic specialist system (NYSE). Consequently, we hypothesize that NASDAQ stocks are affected more by private information (or more precisely, insider trading) than the DJIA stocks. In the next section, we describe our choices of the fifty-one stocks and the public and private information set. We also discuss institutional differences between the NYSE and the NASDAQ market. In Section II, we examine the implications of public and private information for the volatility of daily returns of each stock. In Section III, we turn to the question of the relative importance of individual elements of our information set. Further analysis of the five DJIA stocks and the four NASDAQ stocks that are most sensitive to earnings announcements is given in Section IV, and our results are summarized in Section V.

  • PDF

국고채, 금리 스왑 그리고 통화 스왑 가격에 기반한 외환시장 환율예측 연구: 인공지능 활용의 실증적 증거 (A Study on Foreign Exchange Rate Prediction Based on KTB, IRS and CCS Rates: Empirical Evidence from the Use of Artificial Intelligence)

  • 임현욱;정승환;이희수;오경주
    • 지식경영연구
    • /
    • 제22권4호
    • /
    • pp.71-85
    • /
    • 2021
  • 본 연구는 채권시장과 금리시장의 지표를 이용한 외환시장 환율예측 모델을 만드는데 있어 어떤 인공지능 방법론이 가장 적합한지 밝혀내는데 그 목적이 있다. 채권시장의 대표 상품인 국고채와 통안채는 위험회피 상황이 올 때 대규모로 매도되어지고 그런 경우 환율이 상승하는 모습을 자주 보여주었고, 금리시장에서 통화 스왑 (Cross Currency Swap) 가격은 달러 유동성 문제가 생길 때 주로 하락하였으며, 그 움직임은 환율의 상승에 직간접적인 영향을 미쳐온 점 등을 고려하면, 채권시장과 금리시장에서 거래되는 상품의 가격과 움직임은 외환시장에도 직간접적인 영향을 주고 있으며, 세 시장 사이엔 상호 유기적이고 보완적인 관계가 있다고 볼 수 있다. 지금까지 채권시장, 금리시장, 그리고 외환시장 사이의 관계와 연관성을 밝히는 연구는 있어왔으나, 과거 많은 환율예측 연구들이 주로 GDP, 경상수지 흑자/적자, 인플레이션 등 거시적인 지표를 기반으로 한 연구에 집중되어 왔으며, 채권시장과 금리시장 지표를 기반으로 인공지능을 활용하여 외환시장의 환율을 예측하는 적극적인 연구는 아직 진행되지 않았다. 본 연구는 채권시장 지표와 금리시장 지표를 기반으로, 비선형데이터 분석에 적합한 인공신경망(Artificial Neural Network) 모델과, 선형데이터 분석에 적합한 로지스틱 회귀분석 (Logistic regression), 그리고 비선형/선형데이터 분석에 활용 가능한 의사결정나무 (Decision Tree)를 각각 사용하여 환율예측 모델을 만들고 그 수익률을 비교하여 어떤 모델이 가장 외환시장 환율 예측을 하는데 적합한지 알려준다. 또한, 본 연구는 주식시장, 금리시장, 오일시장, 그리고 외환시장 환율 등 비선형적 시계열 데이터 분석에 많이 사용되어진 인공신경망 모델이 채권시장과 금리시장 지표를 기반으로 한 외환시장 환율예측 모델에 가장 적합한 방법론을 제공하고 있다는 것을 증명한다. 채권시장, 금리시장, 그리고 외환시장 간의 단순한 연관성을 밝히는 것을 넘어, 세 시장 간의 거래 신호를 포착하여 적극적인 상관관계를 밝히고 상호 유기적인 움직임을 증명하는 것은 단순히 외환시장 트레이더 들에게 새로운 트레이딩 모델을 제시하는 것뿐만 아니라 금융시장 전체의 효율성을 증가시키는데 기여할 것이라 기대한다.

노후공동주택 세대수증가형 리모델링 사업의 기획단계 사업성평가 모델 개발 (Development of a Feasibility Evaluation Model for Apartment Remodeling with the Number of Households Increasing at the Preliminary Stage)

  • 고원경;윤종식;유일한;신동우;정대운
    • 한국건설관리학회논문집
    • /
    • 제20권4호
    • /
    • pp.22-33
    • /
    • 2019
  • 정부에서는 공동주택 노후화 문제에 대응하여 공동주택 리모델링 활성화를 위한 법과 제도를 꾸준히 개정 발전시켜왔다. 그러나 이러한 노력에도 불구하고 아직까지 세대수증가형 리모델링은 활성화되지 못하고 있다. 그 이유로 다양한 문제점이 있지만, 본 연구에서는 리모델링 사업 초기단계에 합리적인 사업성 분석과 의사결정을 위한 도구가 없다는 문제점에 주목하여 리모델링 사업성평가 모델을 제시하였다. 일반적으로 사업성(수익성) 판단은 리모델링 설계안 도출 이후에 이루어지기 마련인데, 리모델링 사업을 추진하기 위한 의사결정은 초기 추진위 단계에서 결정되기 때문에 기획단계 사업성 분석 모델이 필요하다. 이에 따라 기존의 단지정보와 자문 및 연구를 통해 도출한 리모델링 사업변수들을 이용하여 공사비, 사업비, 금융비, 일반분양수입비를 산출하였고, 이를 활용하여 투자수익률과 조합원 분담금을 개략적으로 산출할 수 있는 알고리즘을 개발하였다. 또한 개발된 초기단계 사업성 분석모델을 3개의 기추진 사례에 적용하여 모델의 적용성을 검증하였다. 비록 3개의 사례에 적용하였으나, 모델의 예측값과 실제 사례값의 오차는 5%이하로 본 모델의 적용성은 상당히 높다고 볼 수 있다. 향후 사례수를 늘려가면서 모델의 적용성을 높여간다면 실무에서 활용 가능한 유용한 tool이 될 수 있을 것으로 판단된다. 본 연구에서 개발된 개략 사업성 평가 모델은 입주민들의 빠른 의사결정을 지원하여 원활한 사업추진이 가능하게 할 것이며, 모델이 지역별로 다양하게 적용된다면 세대수증가형 리모델링사업 가능단지들의 규모를 파악하고 이를 지원하는 지자체의 정책 수립에도 기여할 수 있을 것으로 기대한다.

회사채 신용등급 예측을 위한 SVM 앙상블학습 (Ensemble Learning with Support Vector Machines for Bond Rating)

  • 김명종
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.29-45
    • /
    • 2012
  • 회사채 신용등급은 투자자의 입장에서는 수익률 결정의 중요한 요소이며 기업의 입장에서는 자본비용 및 기업 가치와 관련된 중요한 재무의사결정사항으로 정교한 신용등급 예측 모형의 개발은 재무 및 회계 분야에서 오랫동안 전통적인 연구 주제가 되어왔다. 그러나, 회사채 신용등급 예측 모형의 성과와 관련된 가장 중요한 문제는 등급별 데이터의 불균형 문제이다. 예측 문제에 있어서 데이터 불균형(Data imbalance) 은 사용되는 표본이 특정 범주에 편중되었을 때 나타난다. 데이터 불균형이 심화됨에 따라 범주 사이의 분류경계영역이 왜곡되므로 분류자의 학습성과가 저하되게 된다. 본 연구에서는 데이터 불균형 문제가 존재하는 다분류 문제를 효과적으로 해결하기 위한 다분류 기하평균 부스팅 기법 (Multiclass Geometric Mean-based Boosting MGM-Boost)을 제안하고자 한다. MGM-Boost 알고리즘은 부스팅 알고리즘에 기하평균 개념을 도입한 것으로 오분류된 표본에 대한 학습을 강화할 수 있으며 불균형 분포를 보이는 각 범주의 예측정확도를 동시에 고려한 학습이 가능하다는 장점이 있다. 회사채 신용등급 예측문제를 활용하여 MGM-Boost의 성과를 검증한 결과 SVM 및 AdaBoost 기법과 비교하여 통계적으로 유의적인 성과개선 효과를 보여주었으며 데이터 불균형 하에서도 벤치마킹 모형과 비교하여 견고한 학습성과를 나타냈다.

러프집합분석을 이용한 매매시점 결정 (Rough Set Analysis for Stock Market Timing)

  • 허진영;김경재;한인구
    • 지능정보연구
    • /
    • 제16권3호
    • /
    • pp.77-97
    • /
    • 2010
  • 매매시점결정은 금융시장에서 초과수익을 얻기 위해 사용되는 투자전략이다. 일반적으로, 매매시점 결정은 거래를 통한 초과수익을 얻기 위해 언제 매매할 것인지를 결정하는 것을 의미한다. 몇몇 연구자들은 러프집합분석이 매매시점결정에 적합한 도구라고 주장하였는데, 그 이유는 이 분석방법이 통제함수를 이용하여 시장의 패턴이 불확실할 때에는 거래를 위한 신호를 생성하지 않는다는 점 때문이었다. 러프집합은 분석을 위해 범주형 데이터만을 이용하므로, 분석에 사용되는 데이터는 연속형의 수치값을 이산화하여야 한다. 이산화란 연속형 수치값의 범주화 구간을 결정하기 위한 적절한 "경계값"을 찾는 것이다. 각각의 구간 내에서의 모든 값은 같은 값으로 변환된다. 일반적으로, 러프집합 분석에서의 데이터 이산화 방법은 등분위 이산화, 전문가 지식에 의한 이산화, 최소 엔트로피 기준 이산화, Na$\ddot{i}$ve and Boolean reasoning 이산화 등의 네 가지로 구분된다. 등분위 이산화는 구간의 수를 고정하고 각 변수의 히스토그램을 확인한 후, 각각의 구간에 같은 숫자의 표본이 배정되도록 경계값을 결정한다. 전문가 지식에 의한 이산화는 전문가와의 인터뷰 또는 선행연구 조사를 통해 얻어진 해당 분야 전문가의 지식에 따라 경계값을 정한다. 최소 엔트로피 기준 이산화는 각 범주의 엔트로피 측정값이 최적화 되도록 각 변수의 값을 재귀분할 하는 방식으로 알고리즘을 진행한다. Na$\ddot{i}$ve and Boolean reasoning 이산화는 Na$\ddot{i}$ve scaling 후에 그로 인해 분할된 범주값을 Boolean reasoning 방법으로 종속변수 값에 대해 최적화된 이산화 경계값을 구하는 방법이다. 비록 러프집합분석이 매매시점결정에 유망할 것으로 판단되지만, 러프집합분석을 이용한 거래를 통한 성과에 미치는 여러 이산화 방법의 효과에 대한 연구는 거의 이루어지지 않았다. 본 연구에서는 러프집합분석을 이용한 주식시장 매매시점결정 모형을 구성함에 있어서 다양한 이산화 방법론을 비교할 것이다. 연구에 사용된 데이터는 1996년 5월부터 1998년 10월까지의 KOSPI 200데이터이다. KOSPI 200은 한국 주식시장에서 최초의 파생상품인 KOSPI 200 선물의 기저 지수이다. KOSPI 200은 제조업, 건설업, 통신업, 전기와 가스업, 유통과 서비스업, 금융업 등에서 유동성과 해당 산업 내의 위상 등을 기준으로 선택된 200개 주식으로 구성된 시장가치 가중지수이다. 표본의 총 개수는 660거래일이다. 또한, 본 연구에서는 유명한 기술적 지표를 독립변수로 사용한다. 실험 결과, 학습용 표본에서는 Na$\ddot{i}$ve and Boolean reasoning 이산화 방법이 가장 수익성이 높았으나, 검증용 표본에서는 전문가 지식에 의한 이산화가 가장 수익성이 높은 방법이었다. 또한, 전문가 지식에 의한 이산화가 학습용과 검증용 데이터 모두에서 안정적인 성과를 나타내었다. 본 연구에서는 러프집합분석과 의사결정 나무분석의 비교도 수행하였으며, 의사결정나무분석은 C4.5를 이용하였다. 실험결과, 전문가 지식에 의한 이산화를 이용한 러프집합분석이 C4.5보다 수익성이 높은 매매규칙을 생성하는 것으로 나타났다.

외국인투자기업의 국제이전가격 결정에 영향을 미치는 환경 및 기업요인 (Factors Affecting International Transfer Pricing of Multinational Enterprises in Korea)

  • 전태영;변용환
    • 중소기업연구
    • /
    • 제31권2호
    • /
    • pp.85-102
    • /
    • 2009
  • 기업환경의 국제화 및 세계화에 따라 국내에 진출하는 다국적기업의 수는 증가할 것으로 보이는데, 그들을 효율적으로 관리할 수 있는 적절한 수단은 별로 연구되고 있지 않은 것 같다. 다국적기업의 국제이전가격은 정교하게 설정되어 조세부담을 회피할 수 있기 때문에, 이를 관리하기 위해서는 다국적기업의 행태를 이해할 필요가 있다. 본 연구는 우리나라에 진출한 외국인 기업의 특성 및 환경적 요인이 국제이전가격의 설정방식에 미치는 영향을 확인하고자 하는데 그 목표를 두고 있다. 2004년 현재 우리나라에 미화 100만불 이상의 직접투자를 수행하고 있는 외국인 투자기업 861개 기업을 대상으로 설문조사를 시행한 결과 121개 기업이 응답하여 이를 본 연구의 분석자료로 사용하였다. 종속변수로는 국제이전가격설정방법이 시장기준 혹은 원가기준에 의거하였는지의 여부를 묻는 2원적변수를 채택하였다. 시장기준방법의 경우 객관성이 높아 세무당국이 선호하는 방법임에 비해 원가기준은 경영자의 주관적인 판단이 개입될 소지가 많아 객관성이 떨어진다는 점에서 구분되기 때문이다. 독립변수로는 법인세, 관세, 세무당국과의 관계, 세무조사가능성, 현지투자자의 지분율, 내부거래비중, 매출액 및 제품수명주기가 채택되었고, 통제변수로는 중소기업여부 및 투자자의 국적이 더미변수의 형태로 포함되었다. 분석 결과를 살펴보면 세무변수로는 법인세와 관세가 유의하게 나타났는데, 그 중요도가 높을수록 경영자에게 재량권이 있는 원가기준이전가격방식을 선호하는 것으로 나타났다. 또 세무당국과의 관계를 중요하게 평가할수록 시장기준이전가격방식을 선호하는 것으로 나타났는데, 현지 정부는 객관성이 높은 시장기준을 가장 선호하기 때문에 기업의 입장에서 이 점을 고려한 것이라 생각할 수 있다. 제품 수명주기의 성숙도가 높을수록 원가기준을 선호하는 것으로 나타났는데, 이는 제품의 성숙도가 높을수록 경쟁 때문에 현지자회사가 시장을 확보하는데 어려움을 느끼게 되므로 이를 지원하는 수단으로 원가기준을 선호하는 것으로 보인다.