• Title/Summary/Keyword: fin efficiency

Search Result 173, Processing Time 0.028 seconds

Basic Experiment on Frost of Plate Fin Coil Evaporator (플레이트 휜 코일형 증발기의 착상에 관한 기초 실험)

  • 백승문;김창영;한인근;김재돌;윤정인
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.211-216
    • /
    • 1999
  • One of the problems in a refrigerator operation is the frost formation on a cold surface of the evaporator. The frost layer is formed by the sublimation of water vapor when the surface temperature is below the freezing point. This frost layer is usually porous and formed on the cold surface of the evaporator. The frost layer on the surface of a evaporator will make side effect such as thermal resistance. However, these important factors have not been used in determining the defrosting period. In this report, a prediction taking into account the change of the fin efficiency due to the growth of the frost layer.

  • PDF

A Study on Enhanced Tubes for Electric Utility Steam Condensers (발전소 수증기 응축기용 전열 촉진관에 대한 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.31-41
    • /
    • 2016
  • A computer program that simulates electric utility steam condensers was developed, and used to investigate the effects of enhanced tubes in steam condensers. The replacement of smooth tubes with enhanced tubes reduces the steam condensing temperature, and increases the efficiency of the electric utility. Therefore, a significant amount of power may be reserved without any modification of the utility. Three enhanced tubes, corrugated, low fin with internal ribs, and low fin with internal 3-D roughness, were considered. The results showed that there is an optimal internal roughness height. Low fin tubes with a 3-D roughness were superior to the other enhanced geometries. This was attributed to longitudinal vortices generated between the circumferential dimples. An additional 0.5 MW~1.3 MW was possible when smooth tubes were replaced with enhanced tubes in the 600 MW electric utility condenser. The additional power increased with increasing coolant temperature. More investigations on fouling, corrosion, and mechanical properties will be necessary for actual applications of enhanced tubes in electric utility condensers.

Mechanical Design Fabrication and Test of a Biomimetic Fish Robot Using LIPCA as an Artificial Muscle (인공근육형 LIPCA를 이용한 물고기 모방 로봇의 설계, 제작 및 실험)

  • Heo, Seok;Wiguna, T.;Goo, Nam-Seo;Park, Hoon-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.36-42
    • /
    • 2007
  • This paper presents mechanical design, fabrication and test of a biomimetic fish robot actuated by a unimorph piezoceramic actuator, LIPCA(Lightweight Piezo-Composite curved Actuator.) We have designed a linkage mechanism that can convert bending motion of the LIPCA into the caudal fin movement. This linkage system consists of a rack-pinion system and four-bar linkage. Four types of artificial caudal fins that resemble caudal fin shapes of ostraciiform subcarangiform, carangiform, and thunniform fish, respectively, are attached to the posterior part of the robotic fish. The swimming test under 300 $V_{pp}$ input with 0.6 Hz to 1.2 Hz frequency was conducted to investigate effect of tail beat frequency and shape of caudal fin on the swimming speed of the robotic fish. At the frequency of 0.9 Hz, the maximum swimming speeds of 1.632 cm/s, 1.776 cm/s, 1.612 cm/s and 1.51 cm/s were reached for fish robots with ostraciiform, subcarangiform carangiform and thunniform caudal fins, respectively. The Strouhal number, which means the ratio between unsteady force and inertia force, or a measure of thrust efficiency, was calculated in order to examine thrust performance of the present biomimetic fish robot. The calculated Strouhal numbers show that the present robotic fish does not fall into the performance range of a fast swimming robot.

Development of heat exchanger by the utilization of underground water. I - Design for plat fin tube - (지하수 이용을 위한 열교환기 개발. I - 냉각핀의 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.119-127
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger, parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. of The registration design : 0247164, by Korean Intellectual property Office). The fin of exchanger was design of the granulated surface for minimizing fouling factor and dew forms, and also placed parallel to the tube in order to minimized the resistance of flows. 1. Aloo-heat was designed to have 0.03m for inside diameter, 0.036m for outside diameter of tube, 0.0012m for thickness of fin and 0.032m for length of plat fin. 2. t was also designed to have 1.5248m2/m for outside area of heat transfer, 0.0942m2/m for inside area contacting hot liquid, and the ratio (Ra) was 16.1869. 3. Efficiency of the fin was 93 percentage when fin length was 0.032m, and the fin thickness satisfied equation $\frac{h{\rho}}{k}$< 0.2 when it was 0.0012m. 4. According to the performance test of Aloo-heat, as the temperature and rate increased, the heating value also increased, heating value was 504kJ/h·m and 6,048kJ/h·m when it was 60℃, 10 𝑙/min and 80℃, 40 𝑙/min respectively. 5. The test of heating value was confident, because correlation value(R2) was 0.9898 for the temperature and 0.9721 for flow rate of hot liquid, respectively.

Experimental Study on Auto-Transmission Fluid Heat Exchanger for Improving Vehicle Fuel Efficiency (차량 연비개선을 위한 자동변속기유 열교환기에 대한 실험적 연구)

  • Jang, Chung-Man;Lee, Yong-Kyu;Kang, Byeong-Dong;Yoo, Jai-Suk;Lee, Jong-Hwa;Kim, Hyun-Jung;Kim, Dong-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.9
    • /
    • pp.947-954
    • /
    • 2011
  • Drive-train friction loss in a vehicle may account for 4% of its total fuel consumption loss. An ATF W/C (auto-transmission fluid warmer/cooler) plate-fin heat exchanger is a type of heat exchanger that uses metal plates to transfer heat between the auto-transmission fluid and coolant. The use of an ATF W/C heat exchanger can result in a fuel economy improvement of about 1% in vehicles. An experimental setup for testing the thermal performance of an ATF W/C plate-fin heat exchanger is developed. In this study, the influence of the ATF and coolant, flow rates, and temperature on the efficiency of an ATF W/C heat exchanger are investigated experimentally. From the experimental data, a simple correlation for predicting the efficiency of an ATF W/C heat exchanger is proposed. On the basis of this correlation, the fuel economy of a vehicle with and without an ATF W/C heat exchanger is compared by using Simulink. Finally, it is shown that the fuel economy is improved by 0.992% when an ATF W/C heat exchanger is installed in the vehicle.

A Study on the Heat Balance of Cooling System for Armored Vehicles (밀폐형 차량 냉각시스템에 대한 열평형 연구)

  • Kim, S.K.;Ahn, S.H.;Nam, K.W.
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.70-75
    • /
    • 2007
  • Heat transfer coefficient and fin efficiency of a heat exchanger dispersed in the microelement of control volume were predicted with various flow patterns, conditions and material properties. A computational program was developed by using the method of efficiency-NTU(Number of transfer unit). The modelling was applied to heat exchangers, also was integrated in power pack cooling system in an armored vehicle. The compatibility and the generality were proved by comparing the prediction values with the test results. The developed program may be useful for the design of the cooling system in an armored vehicle.

  • PDF

Comparison of Efficiency of Flash Memory Device Structure in Electro-Thermal Erasing Configuration (플래시메모리소자의 구조에 대한 열적 데이터 삭제 효율성 비교)

  • Kim, You-Jeong;Lee, Seung-Eun;Lee, Khwang-Sun;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.452-458
    • /
    • 2022
  • The electro-thermal erasing (ETE) configuration utilizes Joule heating intentionally generated at word-line (WL). The elevated temperature by heat physically removes stored electrons permanently within a very short time. Though the ETE configuration is a promising next generation NAND flash memory candidate, a consideration of power efficiency and erasing speed with respect to device structure and its scaling has not yet been demonstrated. In this context, based on 3-dimensional (3-D) thermal simulations, this paper discusses the impact of device structure and scaling on ETE efficiency. The results are used to produce guidelines for ETEs that will have lower power consumption and faster speed.

Comparison of the Thermal Performance of Recuperators with Corrugated Fins for a 500W Class Micro Gas Turbine Generator (500W 급 마이크로 가스터빈을 위한 파형 휜을 가지는 리큐퍼레이터의 열성능 비교)

  • Do, Kyu Hyung;Kim, Tae Hoon;Han, Yong-Shik;Choi, Byung-Il;Kim, Myung Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.847-856
    • /
    • 2013
  • In this study, thermal performance of recuperators with plain and offset strip fins is investigated to enhance the thermal efficiency of a micro gas turbine. Thermal cycle analysis is conducted to determine major design parameters of a single-pass counterflow recuperator. In order to evaluate the performance of the recuperator, the effectiveness and the pressure drop in the recuperators are chosen as the objective function and the design constraint, respectively. The optimized geometries for internal structure of the recuperators with plain and offset strip fins are obtained with varying the fin spacing and height. From the result, the recuperator with offset strip fins has better thermal performance when the fin spacing, s, is smaller than 1.45mm and the thermal performance of the recuperator with plain rectangular fins is higher than that with offset strip fins in the region of $s{\geq}1.45mm$. In addition, it is found that the entrance region effect and the longitudinal wall heat conduction effect should be taken into account for accurately predicting the thermal performance of the recuperators with both plain and offset strip fins.

Performance Evaluation of the Hybrid Defrost Process in the Fin-Tube Evaporators of Refrigerators (하이브리드 제상 방식을 적용한 냉장고용 핀-관 열교환기의 제상 성능 평가)

  • Lee, Su-Won;Park, Yong-Joo;Kweon, Lae-Un;Jeong, Young-Man;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.38-46
    • /
    • 2011
  • The hybrid defrost process combined with hot-gas bypass defrost and electric heater defrost was experimentally evaluated about its defrost performance in the fin-tube evaporators of household refrigerators. Also the hybrid defrost process was compared with only electric heater defrost process. The defrost efficiency of the hybrid defrost process was shown two times higher than electric heater defrost process. The defrost time of the hybrid defrost process was shorten about 10%~50% than electric heater defrost process. Thermal shock after defrost process was decreased about 50% for the case of the hybrid defrost. It was found that energy consumption ratio of defrost process was reduced up to 7.4% compared with 22.4% of electric heater defrost at the condition of $25^{\circ}C$ ambient temperature.

Development and Applications of TOF-MEIS (Time-of-Flight - Medium Energy Ion Scattering Spectrometry)

  • Yu, K.S.;Kim, Wansup;Park, Kyungsu;Min, Won Ja;Moon, DaeWon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.107.1-107.1
    • /
    • 2014
  • We have developed and commercialize a time-of-flight - medium energy ion scattering spectrometry (TOF-MEIS) system (model MEIS-K120). MEIS-K120 adapted a large solid acceptance angle detector that results in high collection efficiency, minimized ion beam damage while maintaining a similar energy resolution. In addition, TOF analyzer regards neutrals same to ions which removes the ion neutralization problems in absolute quantitative analysis. A TOF-MEIS system achieves $7{\times}10^{-3}$ energy resolution by utilizing a pulsed ion beam with a pulse width 350 ps and a TOF delay-line-detector with a time resolution of about 85 ps. TOF-MEIS spectra were obtained using 100 keV $He^+$ ions with an ion beam diameter of $10{\mu}m$ with ion dose $1{\times}10^{16}$ in ordinary experimental condition. Among TOF-MEIS applications, we report the quantitative compositional profiling of 3~5 nm CdSe/ZnS QDs, As depth profile and substitutional As ratio of As implanted/annealed Si, Ionic Critical Dimension (CD) for FinFET, Direct Recoil (DR) analysis of hydrogen in diamond like carbon (DLC) and InxGayZnzOn on glass substrate.

  • PDF