• Title/Summary/Keyword: fin efficiency

Search Result 172, Processing Time 0.036 seconds

Design and Manufacturing of Robotic Dolphin with Variable Stiffness Mechanism (가변강성 메커니즘을 적용한 로봇 돌고래 설계 및 제작)

  • Park, Yong-Jai
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.103-110
    • /
    • 2020
  • Bio-inspired underwater robots have been studied to improve the dynamic performance of fins, such as swimming speed and efficiency, which is the most basic performance. Among them, bio-inspired soft robots with a compliant tail fin can have high degrees of freedom. On the other hand, to improve the driving efficiency of the compliant fins, the stiffness of the tail fin should be changed with the driving frequency. Therefore, a new type of variable stiffness mechanism has been developed and verified. This study, which was inspired by the anatomy of a real dolphin, assessed a process of designing and manufacturing a robotic dolphin with a variable stiffness mechanism. By mimicking the vertebrae of a dolphin, the variable stiffness driving part was manufactured using subtractive and additive manufacturing. A driving tendon was placed considering the location of the tendon in the actual dolphin, and the additional tendon was installed to change its stiffness. A robotic dolphin was designed and manufactured in a streamlined shape, and the swimming speed was measured by varying the stiffness. When the stiffness of the tail fin was varied at the same driving frequency, the swimming speed and thrust changed by approximately 1.24 and 1.5 times, respectively.

A Study of Dust Effect on Performance of Heat Exchangers with Louver and Wavy Fins (루버형과 파형핀 열교환기에서 분진이 성능에 미치는 영향에 관한 연구)

  • Lee, Young-Lim;Hwang, Soon-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.126-132
    • /
    • 2009
  • Automotive heat exchangers use louver fins for their high efficiency. However, the efficiency can significantly drop for constructional vehicles or heavy equipments due to dust deposited on the louver fins with narrow slits. Thus it is necessary to develop new fins that lead to less fouling, so that a better performance can be achieved after exposure to a dusty environment over long period of time. New wavy fins were considered in the study and numerically analysed to compare with louver fins in the areas of air-side pressure drop, heat release rate, and particulate deposition. In addition, an experiment was done on the pressure drop and the particulate deposition. The results showed that the wavy fins would be a better choice for long-term use due to the excellent dust-proof performance in comparison to louver fins, in spite of the initial inferior performance of heat release.

Temperature Control for PV Panel Absorbing Heat by Phase Change Material and its Estimation (상변환물질을 활용한 태양광 패널 표면온도 제어효과 및 최적화 시스템)

  • Lee, Hyo-Jin;Chun, Jong-Han
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.2
    • /
    • pp.10-15
    • /
    • 2010
  • The experimental study was conducted to optimize the system dissipating properly heat from the in-situ solar panel installed on the roof. For this purpose, six 12-Watt panels, which were consisted of the different design conditions such as containing phase change material(PCM), changing the array of the aluminum fin and honeycomb at the back of the panel, were tested. PCM, which had $44^{\circ}C$ melting point, was chosen in this study. In order to enhance absorbing and expelling heatin PCM, profiled aluminum fin was placed either inward oroutward from the panel. Furthermore, Aluminum honeycomb is imbedded in the back container to find if it would improve the thermal conductivity of PCM. During the experiment, there were ranged to $26^{\circ}C\sim32^{\circ}C$ for outdoor temperature and $700W/m^2\sim1000W/m^2$ for irradiance. As a result, the solar panel, combined with honeycomb and outward fins with PCM instead of placing the fins inward, is showing the best performance in terms of controling panel temperature and its efficiency.

Optimal Design of a Heat Sink Using the Kriging Method (크리깅 방법에 의한 방열판 최적설계)

  • Ryu Je-Seon;Rew Keun-Ho;Park Kyoungwoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1139-1147
    • /
    • 2005
  • The shape optimal design of the plate-fin type heat sink with vortex generator is performed to minimize the pressure loss subjected to the desired maximum temperature numerically. Evaluation of the performance function, in general, is required much computational cost in fluid/thermal systems. Thus, global approximate optimization techniques have been introduced into the optimization of fluid/thermal systems. In this study, Kriging method Is used to obtain the optimal solutions associated with the computational fluid dynamics (CFD). The results show that when the temperature .rise is less than 40 K, the optimal design variables are $B_1=2.44\;mm,\;B_2=2.09\;mm$, and t=7.58 mm. Kriging method can dramatically reduce computational time by 1/6 times compared to SQP method so that the efficiency of Kriging method can be validated.

Development of Fin Expansion Type Cooling System using Heat Pipes for LED Lightings (히트파이프를 적용한 LED조명용 핀확장형 냉각시스템 개발)

  • Jung, T.S.;Kang, H.K.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • With the advantages of power savings, increased life expectancy and fast response time over traditional incandescent bulb, LEDs are increasingly used for many applications including automotive, aviation, display, and special lighting applications. Since the high heat generation of LED chips can reduce service life, degrade luminous efficiency, and cause variation of color temperature, many studies have been carried out on the optimization of LED packaging and heat sinks. In this study, a fin expansion type cooling device using heat pipe, instead of a solid aluminum heat sink, was designed for LED security lightings based on thermal resistance analysis. Numerical analysis and experimental validation were carried out to evaluate its cooling performance.

A Study on Performance Characteristics of Heat Exchanger for Heat Pump with R410A Refrigerant (R410A 냉매를 사용한 열펌프용 열교환기의 형상에 따른 성능특성 연구)

  • 정규하;박윤철;오상경
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.340-348
    • /
    • 2004
  • The air and refrigerant side heat transfer performances are key parameters to improve heat transfer efficiency of the heat exchanger including the fan performance. Design of the fins, treatment of the tube inside, tube diameter and tube array effect heat transfer performance of the heat exchanger. The heat exchanger is used as a condenser at cooling mode and used as an evaporator at heating mode in the heat pump system. The heat pump system uses R410A as the refrigerant. The heat exchangers are consisted with 7 mm diameter tubes with slit-type fins. The study was conducted with variation of arrangement of the refrigerant path and air flow rate and refrigerant pressure drop and heat transfer rate were measured with a code tester. The capacity of the 3 path heat exchanger is more efficient than 2 or 4 path heat exchangers in heating or cooling modes.

A Study on the Manufacturing Process for High-finned Tube of Copper Pipe using Roll Forming Method (전조공법을 이용한 동관의 하이핀 튜브 제조 공정에 대한 연구)

  • Kim, Tae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.111-115
    • /
    • 2006
  • High-finned tubes have good thermal conductivity and have better cooling efficiency than plain tubes or low-fined tubes due to bigger air contact area. During high-fined tubes are manufactured by roll forming, the main technique is illustrated to optimizing primary material(copper pipe), optimized die matrix designing technique for roll forming, control manufacturing speed to develop productivity etc. In this study, a roll forming system was developed in oder to produce high-finned tube. Also a multi-step roll forming die was designed & built to produce high-finned tube that has over 10 mm fin height. And then, roll forming test using copper pipe was performed to produce high-finned tube. Roll forming process for producing highfinned tube was optimized by analyzing and adjusting misrostructure, hardness, and surface roughness of roll formed high-fined tube.

The Frost and Defrost Performances of Fin-and-Tube Exchangers with Different Surface Characteristics (표면특성이 다른 두 핀-관 열교환기의 착상 및 제상 성능)

  • 신종민;최봉준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.525-531
    • /
    • 2002
  • The effects of different surface hydrophilicity on frosting and defrosting characteristic were experimentally investigated. Mass of frost and water hold-up was measured. Results showed that no significant difference in the frost mass was found between the two different surfaces while the water hold-up of heat exchanger court be reduced by the enhancement of surface hydrophilicity. Also, the defrosting efficiency m hydrophilic surface was improved by 76%. It was expected that hydrophilic heat exchanger could provide the improvements in both thermal-hydraulic performances and system reliability during frost/defrost operating in refrigeration systems.

A Study of Correlation between DCA and WHS in Fin-and-Tube Heat Exchanger (핀-관 열교환기에서 동적접촉각과 물맺힘량과의 상관관계에 관한 연구)

  • 황준현;고영환;신종민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.786-791
    • /
    • 2002
  • An experimental study on the behavior of the water hold-up by spraying of a fin-and-tube heat exchanger with regard to the surface characteristics, i.e., contact angles, was conducted. The dynamic contact angles (DCA) were measured, and water hold-up by spraying (WHS) was conducted in the experiment. It is found that heat exchanger surface characteristics, spray pressure, spray water temperature and heat exchanger surface temperature play an important role in WHS. In order to evaluate relationship between WHS and surface characteristics, test conditions are determined through a contour analysis. A correlation was proposed to predict WHS as a function of DCA. With its test efficiency and consuming time, the prediction method can be used to evaluate WHS performance.

Basic Experiment on Frost of Plate Fin Coil Evaporator (플레이트 휜 코일형 증발기의 착상에 관한 기초 실험)

  • 백승문;김창영;한인근;김재돌;윤정인
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.11a
    • /
    • pp.211-216
    • /
    • 1999
  • One of the problems in a refrigerator operation is the frost formation on a cold surface of the evaporator. The frost layer is formed by the sublimation of water vapor when the surface temperature is below the freezing point. This frost layer is usually porous and formed on the cold surface of the evaporator. The frost layer on the surface of a evaporator will make side effect such as thermal resistance. However, these important factors have not been used in determining the defrosting period. In this report, a prediction taking into account the change of the fin efficiency due to the growth of the frost layer.

  • PDF