• Title/Summary/Keyword: filtration performance

Search Result 375, Processing Time 0.026 seconds

Continuous Cultivation of Lactobacillus rhamnosus with Cell Recy-cling Using an Acoustic Cell Settler

  • Yang, Yun-Jeong;Hwang, Sung-Ho;Lee, Sang-Mok;Kim, Young-Jun;Koo, Yoon-Mo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.6
    • /
    • pp.357-361
    • /
    • 2002
  • Continuous production of lactic acid from glucose by Lactobacillus rhamnosus with cell recycling using an acoustic cell settler was carried out. The performance of the system, such as the concentration of cell and product were compared with the control experiment without recycling. The acoustic settler showed cell separation efficiency of 67% during the continuous operation and the cell concentration in the fermentor with recycle exceeded that of the control by 29%. Com-pared with the control, tactic acid production was increased by 40%, while glucose consumption was only increased by 8%. The higher value of lactic acid production to substrate consumption (Yp/s, product yield coefficient) achieved by cell recycling is interpreted to indicate that the recycled cell mass consumes less substrate to produce the same amount of product than the control Within system environmental changes due to the longer mean cell residence time induced the cells maintaining the metabolic pathways to produce Less by-Product but more product, lactic acid.

Ozone Effect on the Formation of Chlorine Disinfection Byproducts in Water Treatment Process (정수처리공정상 염소소독부산물형성에 미치는 오존의 영향)

  • Seong, Nak Chang;Park, Hyeon Seok;Lee, Seong Sik;Lee, Yong Hui;Lee, Jong Pal;Yun, Tae Gyeong
    • Journal of Environmental Science International
    • /
    • v.13 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • The effect of ozone on the formation and the removal of disinfection byproducts(DBPs) of chlorination process was studied to elucidate the performance of water treatment process. The samples of raw water, prechlorination process, and preozonation process were analyzed quantitatively according to the Standard Methods for the Examination of drinking water. As a result, most of total trihalomethanes(THMs) which were formed in prechlorine treatment process was not removed in the preozonation process. Most of haloacetic acids(HAAs), haloacetonitriles(HANs), and chloral hydrate(CH) was removed in sedimentation and biological activated carbon(BAC) filtration processes. However, DBPs were increased more or less by postchlorine step. In particular, the formation of THMs and HAAs depends on ozone more than chlorine, but, the formation of HANs and CH depends on chlorine more than ozone. The seasonal variation of DBPs concentration for the year needs to be investigated to study the temperature effect because DBPs strongly depend on temperature among various efficient factors.

A Study on the Removal Characteristics of Indoor Air Pollutants using the Air Cleaning System (실공간에서 공기정화시스템을 이용한 실내 오염 입자 제거 특성에 관한 연구)

  • Koo, Jeong-Hwan;Kim, Seong-Chan;Kim, Jang-Woo;Lee, Ju-Yong;Lee, Jae-Keun;Kang, Tae-Wook;Lee, Kam-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.532-537
    • /
    • 2000
  • The purpose of this study is to determine the performance of a commercial air cleaner in removing tobacco smoke indoors. Following injection of tobacco smoke in a room, decay rates for particle concentrations were obtained far mass concentration at each point. The size distribution of the tobacco smoke particles was approximately $1.266{\mu}m$ in mass median diameter with a geometric standard deviation of 1.313. The air cleaner consisted of an electrostatic filtration unit and a fan operated at a flow rate of 5.98 CMM. The collection efficiency for $>1\;{\mu}m$ was more than 99%. Without air cleaner operation, tobacco smoke concentration ratio in room decreased to 30% of initial values within 30 minutes and with air cleaner operation, decreased to 90% of initial values in the test chamber, volume $51.27\;m^3$. Without air cleaner operation, tobacco smoke concentration ratio in room decreased to 10% of initial values within 30 minutes and with air cleaner operation, decreased to 30-70% of initial values in the test chamber, volume $149.2\;m^3$.

  • PDF

Seismic resilience evaluation of RC-MRFs equipped with passive damping devices

  • Kamaludin, Puteri Nihal Che;Kassem, Moustafa Moufid;Farsangi, Ehsan Noroozinejad;Nazri, Fadzli Mohamed;Yamaguchi, Eiki
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.391-405
    • /
    • 2020
  • The use of passive energy dissipation devices has been widely used in the construction industry to minimize the probability of damage occurred under intense ground motion. In this study, collapse margin ratio (CMR) and fragility curves are the main parameters in the assessment to characterize the collapse safety of the structures. The assessment is done on three types of RC frame structures, incorporating three types of dampers, viscoelastic, friction, and BRB dampers. The Incremental dynamic analyses (IDA) were performed by simulating an array of 20 strong ground motion (SGM) records considering both far-field and near-field seismic scenarios that were followed by fragility curves. With respect to far-field ground motion records, the CMR values of the selected frames indicate to be higher and reachable to safety margin more than those under near-field ground motion records that introduce a high devastating impact on the structures compared to far-field excitations. This implies that the near field impact affects the ground movements at the site by attenuation the direction and causing high-frequency filtration. Besides that, the results show that the viscoelastic damper gives better performance for the structures in terms of reducing the damages compared to the other energy dissipation devices during earthquakes.

Evaluation of operating performance of secondary effluents treatment membrane system adapted chemical backwashing (약품역세를 적용한 하수재이용 막여과 시스템의 운전성능 평가)

  • Kim, Young-Hoon;Lee, Chang-Ha;Jeon, Min-Jung;Lee, Yong-Soo;Lee, Eui-Jong;Nam, Jong-Woo;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.335-342
    • /
    • 2011
  • Secondary effluent contains particle compounds which are comprised of microorganisms that occurs membrane fouling when the water is reused. This study evaluates the characteristics of membrane fouling of secondary effluent reuse. Effects of chemical backwashing are analyzed to reduce membrane fouling by regular chemical backwashing. As the result, major membrane foulants are verified EPS materials which include protein and polysaccharide that cause biofilm cake layer on the membrane. Also, sodium hypochlorite is applied to chemical backwashing. The backwashing improves recover rate when injected chemical concentration is increased and chemical backwashing cycle is amplified. Chemical backwashing cycle affects more than injected chemical concentration yet idle time does not noticeably influence on reducing membrane fouling.

A study on the photocatalyst filter design using UV-C (UV-C를 이용한 광촉매 필터 디자인에 관한 연구)

  • Han, Sang Yun;Kang, Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.276-282
    • /
    • 2019
  • The purpose of this study was to analyze the structure of general filter using ultrafine filter (Profilter), dust collector filter, HEPA (HAPA-High Efficiency Particulate Air) filter, deodorized filters, etc. of air purifiers and to study new types of purified filters that can improve ultrafine dust, harmful gases, and sterilization cleanup performance. The study was also conducted by adding photocatalyst filters to the existing step-by-step filtration filter types, which were proposed in the design three coupling structure filters of the left and right UV-LED installation frames and the photocatalyst coating honeycomb frame. Future research is needed on the effect of photocatalyst filters. This study was to investigate the application and structure of photocatalyst filters to air purifiers.

Effect of inlet structure of filtration system on the removal characteristics of iron particles by ceramic candle filters (집진장치의 유입구조에 따른 세라믹필터의 철입자 제거특성에 미치는 영향)

  • Park, Young-Ok;Jeong, Ju-Yeong;Seo, Yong-Chil
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.189-197
    • /
    • 2009
  • Wet-type particulate removal system is employed in most of ironmaking processes. These de-dusting systems require additional downstream aggregates for treatment of water and for drying of the collected slurry. Thus dried slurry can be pressed in shape of briquettes and recycled in the steelmaking process. Different from the wet-type, the dry-type particulate removal systems generate no slurry. A high-temperature, high-pressure de-dusting system with inertial inlet was developed. The target application of this system was to remove particulate matter generated from the novel ironmaking process and other steelmaking processes. In this study we conducted tests with this newly developed system to evaluate the performance of the silica-carbide (SiC) ceramic filters. In addition, for purpose of comparison, we also conducted tests with a unit which has conventional direct inlet. Fe-Particles collected from the novel ironmaking process were used in our tests as test dusts. The temperature and the pressure were kept constant at their respective values $800^{\circ}C$ and $3kg_f/cm^2$.

  • PDF

Evaluation of effects of textile wastewater on the quality of cotton fabric dye

  • Kaykioglu, Gul;Ata, Reyhan;Tore, Gunay Yildiz;Agirgan, Ahmet Ozgur
    • Membrane and Water Treatment
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2017
  • In this study, reuse of biologically treated wastewater of denim washing and dyeing industry has been evaluated by membrane technologies. After that experiments were carried out at laboratory scale in textile dyeing unit by using obtained permeate water samples on 100% cotton based raw fabric belonging to examined industry. During membrane experiments, two different UF (UC100 and UC030) and two different NF (NP010 and NP030) were evaluated under alternative membrane pressures. In permeate water obtained on selected samples, conductivity at the range of $1860-2205{\mu}S/cm$, hardness at the range of 60 to 80 mg/L, total color at the range of 2.4 to 7.6 m-1 and COD at the range of 25-32 mg/L was determined. The following analyzes were performed for the dyed fabrics: perspiration fastness, rub fastness, wash fastness, color fastness to water, color fastness to artificial light, color measurement through the fabric. According to analysis results, selected permeate water have no negative impact on dyeing quality. The study showed that membrane filtration gave good performance for biologically treated textile wastewater, and NF treatment with UF pre-treatment was suitable option for reuse of the effluents.

Utilization of aerobic granulation to mitigate membrane fouling in MBRs

  • Iorhemen, Oliver T.;Hamza, Rania A.;Tay, Joo Hwa
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.395-409
    • /
    • 2017
  • Membrane bioreactor (MBR) is a compact and efficient wastewater treatment and reclamation technology; but, it is limited by membrane fouling. The control of membrane fouling significantly increases operational and maintenance costs. Bacteria and their byproducts - extracellular polymeric substances (EPS) - are major contributors to membrane fouling in MBRs. A recent attempt at fouling mitigation is the development of aerobic granular sludge membrane bioreactor (AGMBR) through the integration of a novel biotechnology - aerobic granulation - and MBR. This paper provides an overview on the development of AGMBR to mitigate membrane fouling caused by bacteria and EPS. In AGMBR, EPS are used up in granule formation; and, the rigid structure of granules provides a surface for bacteria to attach to rather than the membrane surface. Preliminary research on AGMBR using synthetic wastewater show remarkable membrane fouling reduction compared to conventional MBR, thus improved membrane filtration. Enhanced performance in AGMBR using actual municipal wastewater at pilot-scale has also been reported. Therefore, further research is needed to determine AGMBR optimal operational conditions to enhance granule stability in long-term operations and in full-scale applications.

Preparation of Yeast Hydrolysate Enriched in Cyclo-His-Pro (CHP) by Enzymatic Hydrolysis and Evaluation of Its Functionality

  • Lee, Hyun Jung;Son, Heung Soo;Park, Chung;Suh, Hyung Joo
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.284-291
    • /
    • 2015
  • In this study, we attempted to enrich cyclo-His-Pro (CHP) using enzymatic hydrolysis of yeast and to evaluate the functionality of yeast hydrolysate (YH)-enriched CHP. Flavourzyme offered a better performance in enhancing CHP content than other proteases. The CHP enrichment conditions were optimized as follows: addition of 1% Flavourzyme, 48-h incubation at 60oC, and pH 6.0. The CHP content significantly increased by 20-fold after ultra-filtration (UF). Maximal CHP translation was obtained after heating for 8 h at 50oC and pH 7.0. YH showed poor foaming capacity between pH 3.0 to 9.0. The emulsifying activities of YHs were slightly higher at near acidic pH. Increase in heating temperature and time resulted in decreased CHP content. The results indicate that YH is more heat stable after UF. Therefore, the CHP in YH after UF can be used as a food additive with physiological CHP activity and high heat stability.