Browse > Article
http://dx.doi.org/10.3746/pnf.2015.20.4.284

Preparation of Yeast Hydrolysate Enriched in Cyclo-His-Pro (CHP) by Enzymatic Hydrolysis and Evaluation of Its Functionality  

Lee, Hyun Jung (Department of Public Health Science, Graduate School, Korea University)
Son, Heung Soo (Department of Food Science and Biotechnology, Shin Ansan University)
Park, Chung (LINC Project Group, Daejeon University)
Suh, Hyung Joo (Department of Public Health Science, Graduate School, Korea University)
Publication Information
Preventive Nutrition and Food Science / v.20, no.4, 2015 , pp. 284-291 More about this Journal
Abstract
In this study, we attempted to enrich cyclo-His-Pro (CHP) using enzymatic hydrolysis of yeast and to evaluate the functionality of yeast hydrolysate (YH)-enriched CHP. Flavourzyme offered a better performance in enhancing CHP content than other proteases. The CHP enrichment conditions were optimized as follows: addition of 1% Flavourzyme, 48-h incubation at 60oC, and pH 6.0. The CHP content significantly increased by 20-fold after ultra-filtration (UF). Maximal CHP translation was obtained after heating for 8 h at 50oC and pH 7.0. YH showed poor foaming capacity between pH 3.0 to 9.0. The emulsifying activities of YHs were slightly higher at near acidic pH. Increase in heating temperature and time resulted in decreased CHP content. The results indicate that YH is more heat stable after UF. Therefore, the CHP in YH after UF can be used as a food additive with physiological CHP activity and high heat stability.
Keywords
cyclo-His-Pro (CHP); flavourzyme; ultrafiltration; functionality; yeast hydrolysate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Koh JH, Yu KW, Suh HJ. 2002. Biological activities of Saccharomyces cerevisiae and fermented rice bran as feed additives. Lett Appl Microbiol 35: 47-51.   DOI
2 Hilton CW, Prasad C, Vo P, Mouton C. 1992. Food contains the bioactive peptide, cyclo(His-Pro). J Clin Endocrinol Metab 75: 375-378.
3 Mizuma H, Legardeur BY, Prasad C, Hilton CW. 1996. The bioactive peptide cyclo (His-Pro) may be absorbed following ingestion of nutritional supplements that contain it. J Am Coll Nutr 15: 175-179.   DOI
4 Hwang IK, Go VL, Harris DM, Yip I, Kang KW, Song MK. 2003. Effects of cyclo (his-pro) plus zinc on glucose metabolism in genetically diabetic obese mice. Diabetes Obes Metab 5: 317-324.   DOI
5 Song MK, Rosenthal MJ, Hong S, Harris DM, Hwang I, Yip I, Golub MS, Ament ME, Go VL. 2001. Synergistic antidiabetic activities of zinc, cyclo (His-Pro), and arachidonic acid. Metabolism 50: 53-59.   DOI
6 Song MK, Rosenthal MJ, Song AM, Yang H, Ao Y, Yamaguchi DT. 2005. Raw vegetable food containing high cyclo (his-pro) improved insulin sensitivity and body weight control. Metabolism 54: 1480-1489.   DOI
7 Morley JE, Levine AS, Prasad C. 1981. Histidyl-proline diketopiperazine decreases food intake in rats. Brain Res 210: 475-478.   DOI
8 Steiner H, Wilber JF, Prasad C, Rogers D, Rosenkranz RT. 1989. Histidyl proline diketopiperazine (Cyclo [His-Pro]) in eating disorders. Neuropeptides 14: 185-189.   DOI
9 Song MK, Rosenthal MJ, Song AM, Uyemura K, Yang H, Ament ME, Yamaguchi DT, Cornford EM. 2009. Body weight reduction in rats by oral treatment with zinc plus cyclo-(His-Pro). Br J Pharmacol 158: 442-450.   DOI
10 Tsuruki T, Kishi K, Takahashi M, Tanaka M, Matsukawa T, Yoshikawa M. 2003. Soymetide, an immunostimulating peptide derived from soybean ${\beta}$-conglycinin, is an fMLP agonist. FEBS Lett 540: 206-210.   DOI
11 Pihlanto-Leppala A. 2000. Bioactive peptides derived from bovine whey proteins: opioid and ace-inhibitory peptides. Trends Food Sci Technol 11: 347-356.   DOI
12 Mendis E, Rajapakse N, Kim SK. 2005. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J Agric Food Chem 53: 581-587.   DOI
13 Suetsuna K, Maekawa K, Chen JR. 2004. Antihypertensive effects of Undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J Nutr Biochem 15: 267-272.   DOI
14 Sathe SK, Salunkhe DK. 1981. Functional properties of the Great Northern bean (Phaseolus vulgaris L.) proteins: emulsion, foaming, viscosity, and gelation properties. J Food Sci 46: 71-81.   DOI
15 Klompong V, Benjakul S, Kantachote D, Shahidi F. 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chem 102: 1317-1327.   DOI
16 Visich JE, Byron PR. 1996. High-pressure liquid chromatographic assay for the determination of thyrotropin-releasing hormone and its common metabolites in a physiological salt solution circulated through the isolated perfused rat lung. J Pharm Biomed Anal 15: 105-110.   DOI
17 Pearce KN, Kinsella JE. 1978. Emulsifying properties of proteins: evaluation of a turbidimetric technique. J Agric Food Chem 26: 716-723.   DOI
18 Adler-Nissen J. 1982. Limited enzymic degradation of proteins: A new approach in the industrial application of hydro lases. J Chem Technol Biotechnol 32: 138-156.
19 Ahmed FE, Hall AE, DeMason DA. 1992. Heat injury during floral development in cowpea (Vigna unguiculata, Fabaceae). Am J Bot 79: 784-791.   DOI
20 Prasad C, Peterkofsky A. 1976. Demonstration of pyroglutamylpeptidase and amidase activities toward thyrotropinreleasing hormone in hamster hypothalamus extracts. J Biol Chem 251: 3229-3234.
21 Perry TL, Richardson KS, Hansen S, Friesen AJD. 1965. Identification of the diketopiperazine of histidylproline in human urine. J Biol Chem 240: 4540-4542.
22 Ghosh R, Cui ZF. 2000. Protein purification by ultrafiltration with pre-treated membrane. J Membr Sci 167: 47-53.   DOI
23 Moss J, Bundgaard H. 1990. Kinetics and mechanism of the facile cyclization of histidyl-prolineamide to cyclo (His-Pro) in aqueous solution and the competitive influence of human plasma. J Pharm Pharmacol 42: 7-12.   DOI
24 Li Z, Youravong W, Kittikun AH. 2006. Separation of proteases from yellowfin tuna spleen by ultrafiltration. Bioresour Technol 97: 2364-2370.   DOI
25 Templin TL, Johnston DB, Singh V, Tumbleson ME, Belyea RL, Rausch KD. 2006. Membrane separation of solids from corn processing streams. Bioresour Technol 97: 1536-1545.   DOI
26 Deeslie WD, Cheryan M. 1992. Fractionation of soy protein hydrolysates using ultrafiltration membranes. J Food Sci 57: 411-413.   DOI
27 Sannier F, Lecoeur C, Zhao Q, Garreau I, Piot JM. 1996. Separation of hemoglobin and myoglobin from yellowfin tuna red muscle by ultrafiltration: effect of pH and ionic strength. Biotechnol Bioeng 52: 501-506.   DOI
28 Berot S, Popineau Y, Compoint JP, Blassel C, Chaufer B. 2001. Ultrafiltration to fractionate wheat polypeptides. J Chromatogr B: Biomed Sci Appl 753: 29-35.   DOI
29 Kubec R, Svobodova M, Velisek J. 1999. Gas chromatographic determination of S-alk(en)ylcysteine sulfoxides. J Chromatogr A 862: 85-94.   DOI
30 Ueda Y, Tsubuku T, Miyajima R. 1994. Composition of sulfur-containing components in onion and their flavor characters. Biosci Biotechnol Biochem 58: 108-110.   DOI
31 Casella MLA, Whitaker JR. 1990. Enzymatically and chemically modified zein for improvement of functional properties. J Food Biochem 14: 453-475.   DOI
32 Turgeon SL, Gauthier SF, Paquin P. 1991. Interfacial and emulsifying properties of whey peptide fractions obtained with a two-step ultrafiltration process. J Agric Food Chem 39: 673-676.   DOI
33 Drago S, Gonzalez R. 2000. Foaming properties of enzymatically hydrolysed wheat gluten. Innov Food Sci Emerg Technol 1: 269-273.   DOI
34 Nielsen PM. 1997. Functionality of protein hydrolysates. In Food Proteins and Their Applications. Damodaran S, Paraf A, eds. Marcel Dekker Inc., New York, NY, USA. p 443-472.
35 Gbogouri G, Linder M, Fanni J, Parmentier M. 2004. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J Food Sci 69: C615-C622.   DOI
36 Li X, Li Y, Hua Y, Qiu A, Yang C, Cui S. 2007. Effect of concentration, ionic strength and freeze-drying on the heatinduced aggregation of soy proteins. Food Chem 104: 1410-1417.   DOI
37 Sikorski ZE, Naczk M. 1981. Modification of technological properties of fish protein concentrates. Crit Rev Food Sci Nutr 14: 201-230.   DOI
38 Zayas JF. 1997. Functionality of proteins in food. Springer-Verlag, Berlin, Germany. p 260-309.