• Title/Summary/Keyword: filtration flux

Search Result 265, Processing Time 0.024 seconds

Comparison of Filtrate Quality to Select the Optimum Membrane for the Water Purification Process (정수처리용 최적분리막 선정을 위한 수질 비교)

  • Park, Se-Ho;Choi, Sang-il;Kim, Hyung-Soo;Hwang, Yong-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.1
    • /
    • pp.102-107
    • /
    • 1998
  • This study was conducted to investigate how the pore sizes of MF and UF membranes affected the removal efficiencies. The experimental results were compared with those obtained from the existing sand filter to select the optimum membrane. Turbidity of the raw water was adjusted to 10, 30, 50, 100, and 200NTU. The removal efficiencies of the turbidity and SS were nearly 100% for all membranes applied. Not membrane differences in the removal efficiencies of dissolved organics were also found. Thus, MF membrane with pore size $0.1{\mu}m$ was selected to obtain satisfactory removal efficiencies of turbidity and bacteria. Permeable flux was also considered. The $0.1{\mu}m$ MF membrane system was operated in the treatment plant to compare the results with those obtained from the existing sand filter. Turbidity, SS, $KMnO_4$ consumption, and number of coliform were chosen to be compared. Because there were not much differencies in the quality of the treated water, the existing coagulation-sedimentation-filtration process might be replaced and upgraded by simpler membrane process.

  • PDF

Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.481-487
    • /
    • 2018
  • Membrane clogging or fouling of the membrane caused by organic, inorganic, and biological on the surface is one of the main obstacles to achieve high flux over a long period of the membrane filtration process. So researchers have been many attempts to reduce membrane fouling and found that there is a close relationship between membrane surface hydrophilicity and membrane fouling, such that the same conditions, a greater hydrophilicity were less prone to fouling. Nanotechnology in the past decade is provided numerous opportunities to examine the effects of metal nanoparticles on the both hydrophilic and antibacterial properties of the membrane. In the present study the improvement of hydrophilic and antimicrobial properties of the membrane was evaluated by adding nanoparticles of titanium dioxide and copper oxide. For this purpose, 4% copper oxide and titanium dioxide nanoparticles with a ratio of 0, 30, 50, and 70% of copper oxide added to the polymeric membrane and compare to the pure polymeric membrane. Comparison experiments were performed on E. coli PTCC1998 in two ways disc and tube and also to evaluate membrane hydrophilic by measuring the contact angle and diameter of pores and analysis point SEM has been made. The results show that the membrane-containing nanoparticle has antibacterial properties and its impact by increasing the percentage of copper oxide nanoparticles increases.

A study on the fouling characteristics of low-pressure membranes and NOM with coagulation pretreatment (응집제 주입에 따른 NOM과 저압막의 막오염 특성에 관한 연구)

  • Park, Sang-Hyuk;Hong, Jong-Hyun;Yu, Myong-Jin;Koo, Ja-Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.237-246
    • /
    • 2010
  • This study was carried out to compare the performances of hydrophobic and hydrophilic membranes in the filtration of the pretreatment waters using coagulants such as PAC and PAHCs, and to investigate the influence of NOM characteristics on the fouling of membranes. As a result, the hydrophobic fraction was more effectively removed by PAHCs, however the transphilic and hydrophilic fraction were more effectively removed by PAC on NOM removal. Raw water showed the highest response in the range of humic substances, and pre-coagulated waters with PAC and PAHCs followed. It was also observed that the fouling effect for a hydrophobic membrane was greater than that of a hydrophilic membrane with a similar pore size, due to fouling caused by adsorption. Foulants causing significant flux decline were alcoholic compounds (polysaccharide-like) and humic substances including aromatic groups. Especially, it appeared that alcoholic compounds such as polysaccharide-like substances which mostly remained after coagulation pretreatment had most influence on fouling. It was found that fouling were influenced by each fraction NOM components depending on coagulants used. And PAHCs was more efficient for membrane fouling than PAC.

Comparition of Submerged / Pressurized Type Membrane System by DRF and Long-Term Results in MF Drinking Water Treatment (MF막여과 정수처리에서 장기운전 결과 및 DRF를 이용한 침지식 / 가압식 시스템의 비교 평가)

  • Ha, Keum Ryul;Kim, Kwan Yeop;Kim, Hyo-Sang;Lee, Yong Soo;Song, June Sup;Kim, Chung Hwan;Yeom, Ick Tae;Lee, Yong Hoon;Kim, Hyung Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.79-86
    • /
    • 2008
  • In Korea, most of the drinking water treatment relied upon the availability of the surface water, of which the raw water quality varied significantly by season and location. Therefore, the comparison of two operation modes (Pressurized type and Submerged type membrane system) must be estimated before the long-term establishment of two systems. In this study, two pilot-scale microfiltration systems with the capacity of $50m^3/day$ were installed and operated in two different modes, and the applicability of the system was determined based on the results such as the TMP (Trans-Membrane Pressure) and flux. For quantitatively comparing the two systems, a new concept, DRF (Differential Resistance Fraction) was introduced. The accumulated sum of the permeate after each cycle of chemical cleaning was also used as a tool for the system comparison.

Photodegradation stability study of PVDF- and PEI-based membranes for oily wastewater treatment process

  • Ong, C.S.;Lau, W.J.;Al-anzi, B.;Ismail, A.F.
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.211-223
    • /
    • 2017
  • In this work, an attempt was made to compare the effects of UV irradiation on the intrinsic and separation properties of membranes made of two different polymeric materials, i.e., polyvinylidene fluoride (PVDF) and polyetherimide (PEI). The changes on membrane structural morphologies and chemical characteristics upon UV-A exposure (up to 60 h) were studied by FESEM and FTIR, respectively. It was found that cracks and fractures were detected on the PVDF-based membrane surface when the membrane was exposed directly to UV light for up to 60 h. Furthermore, the mechanical strength and thermal stability of irradiated PVDF-based membrane was reported to decrease with increasing UV exposure time. The PEI membrane surface meanwhile remained almost intact throughout the entire UV irradiation process. Filtration experiments showed that the permeate flux of UV-irradiated PVDF membrane was significantly increased from approximately 11 to $16L/m^2.h$ with increasing UV exposure time from zero to 60 h. Oil rejection meanwhile was decreased from 98 to 85%. For the PEI-based membrane, oil rejection of >97% was recorded and its overall structural integrity was marginally affected throughout the entire UV irradiation process. The findings of this work showed that the PEI-based membrane should be considered as the host for photocatalyts incorporation if the membrane was to be used for UV-assisted wastewater treatment process.

Development of Submerged Membrane Bioreactor for Biological Nutrient Removal on Municipal Wastewater and Analyzing the Effect of Chemical Cleaning on Microbial Activity (도시 하수에서의 생물학적 고도처리를 위한 MBR공정 개발 및 화학세정에 의한 미생물 활성도 영향 분석)

  • Park, Jong-Bu;Park, Seung-Kook;Hur, Hyung-Woo;Kang, Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.120-124
    • /
    • 2009
  • This study was performed to investigate the application of submerged membrane bioreactor (MBR) system for biological nutrient removal of municipal wastewater. MBR bioreactor consists of four reactors such as anaerobic, stabilization, anoxic and submerged membrane aerobic reactors with two internal recycles. The hydraulic retention time (HRT), sludge retention time (SRT) and flux were 6.2 hr, 34.1 days and $19.6L/m^2/hr$ (LMH), respectively. As a result of operation, the removal efficiency of $COD_{Cr}$, SS, TN and TP were 94.3%, 99.9%, 69.4%, and 74.6%, respectively. There was no significant effect of microbial activity after the maintenance cleaning using 200 mg/L of NaOCl. Membrane filtration for the treatment of municipal wastewater was performed for longer than 9 months without chemical recovery cleaning.

A Study on Possibility of Sedimentation Basin Omission After Installed Membrane System in Drinking Water Treatment (정수처리시설에서 막공정 도입시 침전공정생략 가능성에 관한 연구)

  • Kim, Hyung-Sun;Zhoh, Choon-Koo;Hong, Seong-Ho;Kim, Sung-Jin;Lee, Kil-Sook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.3
    • /
    • pp.403-410
    • /
    • 2006
  • The objective of this study was to evaluate the possibility of sedimentation basin omission when installed hybrid membrane filtration process in the field plant with the capacity of $500m^3/day$ for 11 months in the "G", water purification plant in Seoul. In order to evaluate the possibility of the sedimentation basin omission, we measured the change of DOC by coagulant dosage. Dosage of PAC(power activated carbon) 4mg/L and coagulant($AI_2O_3$ 10%) 1.67mg/L were compatible to meet the water quality. Also according to the experiment without settlement process, optimization G values were determined to be 300/s, 64/s, and 32/s at the mixing tank, the first flocculator and the second flocculator, respectively. The test was performed under the conditions PAC-coagulation-no settlement-MF. As a result, a dosage of 4.0mg/L as PAC and 0.86 to 1.22mg/L as $Al_2O_3$(10%) in the condition of flux of 62.5LMH were determined to keep TMP value less than $1.0kg_f/cm^2$.

Evaluation of a Thermophilic Two-Phase Anaerobic Digestion Coupled with Membrane Process for Garbage Leachate Treatment (음식물 탈리액 처리를 위한 막결합형 고온 2상 혐기성 소화 공정의 평가)

  • Lee, Eun-Young;Jun, Duk-Woo;Lee, Sang-Hwa;Bae, Jae-Ho;Kim, Jeong-Hwan;Kim, Young-O
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • This study evaluated the performance of a thermophilic two-phase anaerobic digestion (TTPAD) coupled with membrane process treating garbage leachate. The pilot-scale treatment system is consisted of thermophilic acidogenic reactor (TAR) and thermophilic methanogenic reactor (TMR) coupled with an ultrafiltration (UF) membrane unit. The hydraulic retention time of TAR and TMR were 4 and 20 days, respectively. Effluent TCOD and SCOD of the TTPAD were $25\;{\pm}\;6\;and\;12\;{\pm}\;3$ g/L, respectively, and the corresponding TCOD and SCOD removal efficiencies were 77% and 81%, respectively. Propionate was major acids as 75% in the effluent. Scum formation was not observed in TTPAD, which might be resulted from complete lipid degradation. However, TTPAD was appeared to be sensitive to free ammonia toxicity. The UF membrane was operated with constant pressure filtration at average TMP 1.3 atm. Permeate flux had a range of 15-30 $L/m^2/hr$. With UF membrane, TCOD removal increased from 77% to 93%, and this SS free effluent would be beneficial to subsequent processes such as ammonia stripping.

Evaluation of Filter Capacity for Sea Dyke Slope Filter Layer by In-situ Rainfall Test (현장 강우재현시험을 통한 방조제 사면필터층의 필터성능분석)

  • Oh, Young-In;Kim, Seo-Ryong;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.828-837
    • /
    • 2006
  • Geotextiles consist of three major types of geosynthetic material (woven, non-woven and composite) and the functions of geotextiles are separation, reinforcement, filtration, drainage and as a moisture barrier. Although the many research scholar and engineer developed and established the design criteria and construction methodology, sustainable research still needed for optimum design methodology to the complicate field conditions. In this study, in-situ rainfall test performed to develop suitable filter system for sea dyke upper slope filter layer. In-situ rainfall test conducted for seven different filter system and measured the infiltration flux and pore pressure at various filter layer. Based on the test results, the double layered geotextile filter and sand transition system is most suitable for sea dyke upper filter layer because which system is effective for drainage of infiltration flow and minimize the deformation of sea dyke cover stone.

  • PDF

PVDF-TiO2 coated microfiltration membranes: preparation and characterization

  • Shon, H.K.;Puntsho, S.;Vigneswaran, S.;Kandasamy, J.;Kim, J.B.;Park, H.J.;Kim, I.S.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.193-206
    • /
    • 2010
  • Organic fouling and biofouling pose a significant challenge to the membrane filtration process. Photocatalysis-membrane hybrid system is a novel idea for reducing these membranes fouling however, when $TiO_2 photocatalyst nanoparticles are used in suspension, catalyst recovery is not only imposes an extra step on the process but also significantly contributes to increased membrane resistance and reduced permeate flux. In this study, $TiO_2$ photocatalyst has been immobilized by coating on the microfiltration (MF) membrane surface to minimize organic and microbial fouling. Nano-sized $TiO_2$ was first synthesized by a sol-gel method. The synthesized $TiO_2$ was coated on a Poly Vinyl Difluoride (PVDF) membrane (MF) surface using spray coating and dip coating techniques to obtain hybrid functional composite membrane. The characteristics of the synthesized photocatalyst and a functional composite membrane were studied using numerous instruments in terms of physical, chemical and electrical properties. In comparison to the clean PVDF membrane, the $TiO_2$ coated MF membrane was found more effective in removing methylene blue (20%) and E-coli (99%).