• Title/Summary/Keyword: filtration coefficient

Search Result 93, Processing Time 0.022 seconds

Development of Heating Technology for Greenhouse by Use of Ground Filtration Water Source Heat Pump (여과수열원 히트펌프를 이용한 온실난방기술 개발)

  • Moon, J.P.;Lee, S.H.;Kang, Y.K.;Lee, S.J.;Kim, K.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.172.2-172.2
    • /
    • 2010
  • This study was carried out in order to reduce the installation expense of heating system for greenhouse comparing to geothermal heat pump and develope the coefficient of performance (COP) for a heat pump. For getting plenty of heat flux from geothermal energy. Surface water in river channel was used for getting a lots of geothermal heat by penetrating water through underground soil layer of the river bank that make heat transmission to passing water. The range of water temperature after the process of Ground filtration is 13~18 degrees celsius which is very similar to low heat source of geothermal heat pump system and the plenty amount of heat source from that make the number of geothermal heat exchanging hole and the expense for geothermal heat exchanger construction reduced. Drainage well is also used for returning filtration water to the aquifer that keep the water good recirculation from losing geothermal heat and water resource. For the COP improvement of Heat pump, thermal storage tank with separating insulation plate according to the temperature difference make the COP of Heat pump that is similar to thermal storage tank with diffuser. Developed thermal storage tank make construction expense cheaper than customarily used one's. and that sand filter and oxidation sand (FELOX) are going to be used for improving ground filtration water quality that make heat exchanger efficiency better. All above developed component skill are going to be set on the Ground filtration water source heat pump system and applied for medium, large scale for protected greenhouse in riverside area and on-site experiment is going to do for optimizing the heating system function and overcome the problem happening in the process of on-site application afterward.

  • PDF

A Study on Prediction of On-line Type Pulse Air Jet Bag Filter Effective Pulsing Distance (연속탈진형 충격기류식 여과집진장치의 여과포 유효탈진거리 예측)

  • Jeong-Sam Son;Jeong-Min Suh;Jeong-Ho Park
    • Journal of Environmental Science International
    • /
    • v.32 no.8
    • /
    • pp.555-561
    • /
    • 2023
  • A study is to predict the effective pulsing distance following to the pulsing pressure, nozzle diameter, filtration velocity using numercial analysis techniques and use it as an efficient operation condition and economic data for on-line type pulse air jet bag filter. Filtration area 6 m2 condition, calculate filter resistance coefficient for simulation through the primary experiments using coke dust. For CFD simulation, analysis pulsing characteristics about nozzle diameter, filtration velocity and pulsing pressure. The maximum pulsing length of on-line type pulse air jet bag filter, in 10mm nozzle, filtration velocity 1.5m/min and pulsing pressure 5 bar conditions, is 2,285 mm, maximum length is 76.2% of the total filter bag, which is sufficient to pulsing. In 12mm nozzle, pulsing pressure 5 bar and filtration area 1.22 m2 conditions, the maximum pulsing length of on-line type pulse air jet bag filter is 1,744~2,952 mm, and the maximum length is 2,952 mm indicates pulsing air can be reached to the bottom of filter bag. When the nozzle diameter is increased 8mm to 10mm, maximum pulsing length is extended 40~47%, and increased 10mm to 12 mm, maximum pulsing length is extended 10~17%. For effective pulsing, over the 5bar of pulsing pressure and larger than 10 mm of nozzle diameter are required.

The Prediction of Optimal Pulse Pressure Drop by Empirical Static Model in a Pulsejet Bag Filter (경험모델을 이용한 충격기류식 여과집진기의 적정 탈진압력 예측)

  • Suh, Jeong-Min;Park, Jeong-Ho;Lim, Woo-Taik;Kang, Jum-Soon;Cho, Jae-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.613-622
    • /
    • 2012
  • A pilot-scale pulse-jet bagfilter was designed, built and tested for the effects of four operating conditions (filtration velocity, inlet dust concentration, pulse pressure, and pulse interval time) on the total system pressure drop, using coke dust from a steel mill factory. Two models were used to predict the total pressure drop according to the operating conditions. These model parameters were estimated from the 180 experimental data points. The empirical model (EM) with filtration velocity, areal density, inlet dust concentration, pulse interval time and pulse pressure shows the best correlation coefficient (R=0.971) between experimental data and model predictions. The empirical model was used as it showed higher correlation coefficient (R=0.971) compared to that of the Multivariate linear regression(MLR) (R=0.961). The minimum pulse pressure predicted by empirical model (EM) was 5kg/$cm^2$.

Mass Transfer Model and Coefficient on Biotrickling Filtration for Air Pollution Control (대기오염제어를 위한 생물살수여과법에서 물질전달 Model과 계수에 관한 연구)

  • Won, Yang-Soo;Jo, Wan-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.489-495
    • /
    • 2015
  • A fundamental mathematical model for mass transfer processes has been used to understand the air pollution control process in biotrickling filtration and to evaluate the mass transfer coefficients of gas/liquid (trickling liquid), gas/solid (biomass) and liquid/solid based upon experimental results and mathematical model calculations for selected operating conditions. The mass transfer models for the utilization of the steady-state mass balance for gas/liquid, and dynamic mass balance model for gas/solid & liquid/solid in biotrickling filters were established and discussed. The mass transfer model considered the reactor to comprise finite sections, for each of which dynamic mass balances for gas/solid and liquid/solid system were solved by numerical analysis code (numerical iteration). To determine the mass transfer coefficients ($K_La$) of gas/liquid, gas/solid & liquid/solid in a biotrickling filter, the calculation results based upon mass balance equation was optimized to coincide with the experimental results for the selected operating conditions. Finally, this study contributed the development of experimental methods and discussed the mathematical model to determine the mass transfer coefficients in a biotrickling filtration for air pollution control.

The Influence of Water Temperature and Salinity on Filtration Rates of the Hard Clam, Meretrix petechialis (말백합의 연령별 여과율에 미치는 수온과 염분의 영향)

  • Lim, Kyeong-Hun;Jang, Kyu-Sang;Kim, In-Sou;Lee, Jeong-Ho;Shin, Hyun-Chool
    • The Korean Journal of Malacology
    • /
    • v.24 no.3
    • /
    • pp.175-188
    • /
    • 2008
  • This study was performed to describe the influence of water temperature and salinity on the filtration rate of the hard clam, Meretrix petechialis. The filtration rates of hard clams showed significant differences depending on both water temperature and age group (two-way ANOVA, p < 0.001). The filtration rate of all the hard clams, aged from 1 to 4 years, was generally reduced in low temperature range ( $5-15^{\circ}C$). As the water temperature increased, the filtration rate increased exponentially. The filtration rate was relatively high in $20-30^{\circ}C$ water temperature range, but rapidly decreased again at around $35^{\circ}C$. Variations in the data for filtration rates of hard clams, relative to age and changing water temperature, were used to determine the temperature coefficient $Q_{10}$ in each water temperature range. In $5-15^{\circ}C$ temperature range, every age group showed the highest $Q_{10}$ figure. It was found that on the whole, the higher the water temperature was, the lower the number of $Q_{10}$ was. Regardless of age, the number of $Q_{10}$ was higher in the lower water temperature range. In $25-35^{\circ}C$ temperature range, the number of $Q_{10}$ was less than 1.00 in all age groups, implying that this is the range in which the filtration rate decreased. Variations in the filtration rate also showed very clear differences (two-way ANOVA, p < 0.001) according to changing salinity and age. All the age groups, from 1 to 4 year olds, showed low filtration rates at both low salinity (10-15 psu) and high salinity (40 psu). The highest filtration rate was recorded at 30 psu, and relatively high filtration rates were found around 30 psu. However, the Student-Newman-Keuls post hoc multiple comparison test found that the hard clams in the 1-year group showed high filtration rates in a relatively narrower salinity range compared to those in the 2, 3, and 4 year groups. In other words, hard clams in the 2, 3, and 4 year groups showed high filtration rates at higher levels of salinity.

  • PDF

A Study on the Design of Artificial Stream for Riverbed Filtration in Multi-purpose Filtration Pond (다목적 여과저류지에서의 하상여과용 인공하천 설계연구)

  • Sohn, Dong-Hoon;Park, Jae-Young;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.7
    • /
    • pp.536-543
    • /
    • 2011
  • In order to find the best design of artificial stream for the riverbed filtration in multi-purpose filtration pond, a mathematical model was developed employing the energy line and the Manning's formula and was analyzed by the Euler's technique. Various design factors were investigated through scenario analyses of the artificial stream using the model. Results showed that the appropriate slope of the stream bottom was 2/10,000 and the appropriate infiltration rate at the streambed was $2.5m^3/m^2-day$ for the pond with the area of 100 ha, and that the Manning's roughness coefficient in this case was expected to be about 0.026 and the maximum water-depth was less than 1m. It was also shown that the longer the artificial stream the more advantageous it became for the riverbed filtration. Furthermore, results showed that it was not an efficient way to prevent clogging of the streambed by increasing the flow velocity of the stream and that the performance was higher near a weir with a large head drop.

Novel adsorption model of filtration process in polycarbonate track-etched membrane: Comparative study

  • Adda, Asma;Hanini, Salah;Abbas, Mohamed;Sediri, Meriem
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.479-487
    • /
    • 2020
  • Current assumptions are used in the formulation of pseudo-first (PFO) and second-order (PSO) models to describe the kinetic data of filtration based on ideal operating conditions. This paper presents a new model developed with pseudo nth order and based on real assumption. A comparison was performed between PFO, PSO and the new model to highlight their performance and the optimisation of the pseudo-order equation, using MATLAB software. Adsorption characteristic of bovine serum albumin adsorption on the track-etched membrane are used as a medium based on protein filtration data were extracted from the literature for different concentrations to demonstrate the comparison between PFO/PSO and the new model. The pseudo first and second-order kinetic models were applied to test the experimental data and they did not provide reasonable values. The results show that the predicted values are consistent with experimental values giving a good correlation coefficient R2 = 0.997 and a minimum root mean squared error RMSE = 0.0171. Indeed, the experimental results follow the new model and the optimal pseudo equation order n = 1.115, the most suitable curves for the new model. As a result, we used different experimental adsorption data from the literature to examine and check the applicability and validity of the model.

Performance Evaluation of Combined Sewer Overflow Treatment using Filtration Pilot Device (파일럿 여과장치를 이용한 합류식하수관 월류수 처리성능 평가)

  • Lee, Jun Ho;Shin, Young Gyun
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.409-417
    • /
    • 2019
  • In this study, a $480m^3/day$ pilot device was constructed through laboratory experiments based on the Ministry of Environment manual. The purpose of this study was to analyze the characteristics of CSO treatment and backwashing characteristics by applying the pilot device to the field. The purpose of this study was to acquire the basic data necessary for the design and operation management of the real scale filtration type non-point pollution control system. The filtration was conducted while maintaining the linear velocity of 20m/hour. The CSO treatment efficiencies of the pilot devices were 0.4-76.1%(mean 49.0 %), SS 51.4-91.6%(mean 77.8%), COD 22.2-59.4% (mean 38.3%) and TP 14.5-52.6%(mean 38.1%),respectively. The correlation coefficient between SS and the turbidity of influent water was 0.90, higher than that of CSO. To operate the treatment system effectively, the turbidity can be easily measured in real time as the monitoring item is the most appropriate because SS is the main target substance of the non-point source. As a result of analyzing the adsorbent treatment characteristics of PP filter material applied to this pilot device, the average particle diameter range of influent was $4.6-40.1{\mu}m$(mean $21.2{\mu}m$) and the treated water was $0.9-24.5{\mu}m$(mean $6.4{\mu}m$), respectively. Particles of approximately 10m or less are leached out, and so it is necessary to compensate for the raw water containing micro particulate matter.

A Numerical Analysis for Estimations of Osmotic Pressure of Colloidal Suspension and Gradient Diffusion Coefficient of Particles from Permeate Flux Experiments (투과플럭스 실험으로부터 콜로이드 서스펜션의 삼투압과 입자의 구배확산계수 산출을 위한 수치적 해석)

  • 전명석
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.90-96
    • /
    • 2002
  • A novel methodology on the calculations of osmotic pressure and gradient diffusion coefficient has been provided ill the present study, by applying a succinct numerical analysis on the experimental results. Although both the osmotic pressure and the gradient diffusion coefficient represent a fundamental characteristic in related membrane filtrations such as microfiltration and ultrafiltration, neither theoretical analysis nor experiments can readily determine them. The osmotic pressure of colloidal suspension has been successfully determined from a relationship between the data of the time-dependent permeate flux, their numerical accumulations, and their numerical derivatives. It is obvious that the osmotic pressure is gradually increased, as the particle concentration increases. The thermodynamic coefficient was calculated from the numerical differentiation of the correlation equation of osmotic pressure, and the hydrodynamic coefficient was evaluated from the previously developed relation for an ordered system. Finally, the estimated gradient diffusion coefficient, which entirely depends on the particle concentration, was compared to the previous results obtained from the statistical mechanical simulations.

Comparative analysis of Glomerular Filtration Rate measurement and estimated glomerular filtration rate using 99mTc-DTPA in kidney transplant donors. (신장이식 공여자에서 99mTc-DTPA를 이용한 Glomerular Filtration Rate 측정과 추정사구체여과율의 비교분석)

  • Cheon, Jun Hong;Yoo, Nam Ho;Lee, Sun Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.25 no.2
    • /
    • pp.35-40
    • /
    • 2021
  • Purpose Glomerular filtration rate(GFR) is an important indicator for the diagnosis, treatment, and follow-up of kidney disease and is also used by healthy individuals for drug use and evaluating kidney function in donors. The gold standard method of the GFR test is to measure by continuously injecting the inulin which is extrinsic marker, but it takes a long time and the test method is complicated. so, the method of measuring the serum concentration of creatinine is used. Estimated glomerular filtration rate (eGFR) is used instead. However, creatinine is known to be affected by age, gender, muscle mass, etc. eGFR formulas that are currently used include the Cockroft-Gault formula, the modification of diet in renal disease (MDRD) formula, and the chronic kidney disease epidemilogy collaboration (CKD-EPI) formula for adults. For children, the Schwartz formula is used. Measurement of GFR using 51Cr-EDTA (diethylenetriamine tetraacetic acid), 99mTc-DTPA (diethylenetriamine pentaacetic acid) can replace inulin and is currently in use. Therefore, We compared the GFR measured using 99mTc-DTPA with the eGFR using CKD-EPI formula. Materials and Methods For 200 kidney transplant donors who visited Asan medical center.(96 males, 104 females, 47.3 years ± 12.7 years old) GFR was measured using plasma(Two-plasma-sample-method, TPSM) obtained by intravenous administration of 99mTc-DTPA(0.5mCi, 18.5 MBq). eGFR was derived using CKD-EPI formula based on serum creatinine concentration. Results GFR average measured using 99mTc-DTPA for 200 kidney transplant donors is 97.27±19.46(ml/min/1.73m2), and the eGFR average value using the CKD-EPI formula is 96.84±17.74(ml/min/1.73m2), The concentration of serum creatinine is 0.84±0.39(mg/dL). Regression formula of 99mTc-DTPA GFR for serum creatinine-based eGFR was Y = 0.5073X + 48.186, and the correlation coefficient was 0.698 (P<0.01). Difference (%) was 1.52±18.28. Conclusion The correlation coefficient between the 99mTc-DTPA and the eGFR derived on serum creatinine concentration was confirmed to be moderate. This is estimated that eGFR is affected by external factors such as age, gender, and muscle mass and use of formulas made for kidney disease patients. By using 99mTc-DTPA, we can provide reliable GFR results, which is used for diagnosis, treatment and observation of kidney disease, and kidney evaluation of kidney transplant patients.