• Title/Summary/Keyword: filter space

Search Result 1,006, Processing Time 0.029 seconds

State-Space Representation of Complementary Filter and Design of GPS/INS Vertical Channel Damping Loop (보완 필터의 상태 공간 표현식 유도 및 GPS/INS 수직채널 감쇄 루프 설계)

  • Park, Hae-Rhee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.727-732
    • /
    • 2008
  • In this paper, the state-space representation of generalized complimentary filter is proposed. Complementary filter has the suitable structure to merge information from sensors whose frequency regions are complementary. First, the basic concept and structure of complementary filter is introduced. And then the structure of the generalized filter and its state-space representation are proposed. The state-space representation of complementary filter is able to design the complementary filter by applying modern filtering techniques like Kalman filter and $H_{\infty}$ filter. To show the usability of the proposed state-space representation, the design of Inertial Navigation System(INS) vertical channel damping loop using Global Positioning System(GPS) is described. The proposed GPS/INS damping loop lends the structure of Baro/INS(Barometer/INS) vertical channel damping loop that is an application of complementary filter. GPS altitude error has the non-stationary statistics although GPS offers navigation information which is insensitive to time and place. Therefore, $H_{\infty}$ filtering technique is selected for adding robustness to the loop. First, the state-space representation of GPS/INS damping loop is acquired. And next the weighted $H_{\infty}$ norm proposed in order to suitably consider characteristics of sensor errors is used for getting filter gains. Simulation results show that the proposed filter provides better performance than the conventional vertical channel loop design schemes even when error statistics are unknown.

CODEX Filter Configuration

  • Bong, Su-Chan;Yang, Heesu;Kim, Jihun;Lee, Jae-Ok;Kim, Yeon-Han;Cho, Kyuhyoun;Reginald, Nelson L.;Gong, Qian;Budinoff, Jason G.;Newmark, Jeffrey S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.78.3-79
    • /
    • 2021
  • Coronal Diagnostic Experiment (CODEX) is a diagnostic coronagraph developed by the Korea Astronomy and Space Science Institute and the NASA Goddard Space Flight Center (GSFC) to be deployed in 2023 on the International Space Station (ISS). It is designed to obtain simultaneous measurements of electron density, temperature, and velocity in the 2.5 - 10 solar radius range using multiple filters. The filters are mounted in two filter wheel assemblies (FWAs), which have five filter positions each. One position of each FWA is occupied by windows, and remaining eight positions are occupied by three bandpass filters for temperature, two bandpass filters for velocity, one Ca II H filter for F-corona, one broadband filter for fast imaging and density, and one neutral density (ND) filter for direct Sun viewing and safety.

  • PDF

Frequency dependent squeezing for gravitational wave detectors using filter cavity and international collaboration of a filter cavity project for KAGRA (중력파 검출기의 양자 잡음 저감을 위한 필터 공동기 기반 주파수 의존 양자조임 기술과 KAGRA의 필터 공동기 제작을 위한 국제협력연구)

  • Park, June Gyu;Lee, Sungho;Kim, Chang-Hee;Kim, Yunjong;Jeong, Ueejeong;Je, Soonkyu;Seong, Hyeon Cheol;Han, Jeong-Yeol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.37.3-38
    • /
    • 2021
  • Radiation pressure noise of photon and photon shot noise are quantum noise limitation in interferometric gravita-tional wave detectors. Since relationship between the two noises is position and momentum of the Heisenberg uncertainty principle, quantum non-demolition (QND) technique is required to reduce the two noises at the same time. Frequency dependent squeezing using a filter cavity is one of realistic solutions for QND measurement and experimental results show that its cutting-edge performance is sufficient to apply to the current gravitational wave detectors. A 300m filter cavity is under construction at adv-LIGO. KAGRA (gravitational wave detector in Japan) has also started international collaboration to build a filter cavity. Recently we joined the filter cavity project for KAGRA. Current status of squeezing and filter cavity research at KASI and details of the KAGRA filter cavity project will be presented.

  • PDF

Discrete-time robust Kalman filter design in indefinite inner product space

  • Lee, Tae-Hoon;Park, Jin-Bae;Yoon, Tae-Sung;Ra, Won-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.45.2-45
    • /
    • 2002
  • $\textbullet$ Uncertainties are described by sum quadratic constraint(SQC) $\textbullet$ SQC is converted into an indefinite quadratic cost function $\textbullet$ A Kalman filter developed in indefinite inner product space is Krein space Kalman filter $\textbullet$ To minimize the SQC, the Krein space Kalman filter is used $\textbullet$ The proposed robust filter outperforms the standard Kalman filter and existing robust Kalman filter $\textbullet$ The proposed filter has the same recursive, simple structure as the standard Kalman filter $\textbullet$ Easy to design, adequate for on-line implementation

  • PDF

REAL-TIME TRAJECTORY ESTIMATION OF SPACE LAUNCH VEHICLE USING EXTENDED KALMAN FILTER AND UNSCENTED KALMAN FILTER (확장칼만필터와 UNSCENTED 칼만필터를 이용한 우주발사체의 실시간 궤적추정)

  • Baek, Jeong-Ho;Park, Sang-Young;Park, Eun-Seo;Choi, Kyu-Hong;Lim, Hyung-Chul;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.501-512
    • /
    • 2005
  • This research supposed when a fictitious KSIV-I space launch vehicle launches from NARO space center. This compared and analyzed the results from real-time trajectory estimation using the Extended Kalman Filter and the Unscented Kalman Filter. A virtual trajectory and observation data are generated for the fictitious KSLV-I and three measurement radars. The performances of both Otters are compared for several simulations with small initial errors, large initial errors, 20Hz and 10Hz data rate. The results show that the Unscented Kalman Filter yields faster convergence and more accurate than the Extended Kalman Filter for the cases with larger initial error and slower data rate conditions.

Accuracy of Free Space Path Loss and Matched Filter Gain Approximated by Using Passband Rectangular Pulse for Ultra Wideband Radio Systems

  • Supanakoon, Pichaya;Tanchotikul, Suchada;Tangtisanon, Prakit;Promwong, Sathaporn;Takada, Jun-Ichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.223-226
    • /
    • 2004
  • This paper analyzes the accuracy of free space path loss and matched filter gain approximated by using a passband rectangular pulse for ultra wideband (UWB) radio systems. The example causal signal, a modulated Gaussian pulse with the same center frequency and frequency bandwidth of the passband rectangular pulse, is used to consider the accuracy. The path loss and matched filter gain of the modulated Gaussian pulse are simulated for the reference results. The UWB free space path loss is shown and is compared with that obtained from simulation and Friis' transmission formula. The UWB matched filter gain is shown and compared with simulation results. From the results, we can see that the UWB path loss formula is more accurate than the Friis' transmission formula. The results from the UWB free space path loss and matched filter gain formulas agree with the simulation. Then, these free space path loss and matched filter gain formulas approximated by using a passband rectangular pulse are appropriate for UWB system.

  • PDF

Robust Transfer Alignment Method based on Krein Space (크레인 공간에 기반한 강인한 전달정렬 기법)

  • Sung-Hye Choe;Ki-Young Park;Hyoung-Min Kim;Cheol-Kwan Yang
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.543-549
    • /
    • 2021
  • In this paper, a robust transfer alignment method is proposed for a strapdown inertial navigation system(SDINS) with norm-bounded parametric uncertainties. The uncertainties are described by the energy bound constraint, i.e., sum quadratic constraint(SQC). It is shown that the SQC can be coverted into an indefinite quadratic cost function in the Krein space. Krein space Kalman filter is designed by modifying the measurement matrix and the variance of measurement noises in the conventional Kalman filter. Since the proposed Krein space Kalman filter has the same recursive structure as a conventional Kalman filter, the proposed filter can easily be designed. The simulation results show that the proposed filter achieves robustness against measurement time delay and high dynamic environment of the vehicle.

Unscented Filtering in a Unit Quaternion Space for Spacecraft Attitude Estimation

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.894-900
    • /
    • 2005
  • A new approach to the straightforward implementation of the unscented filter in a unit quaternion space is proposed for spacecraft attitude estimation. Since the unscented filter is formulated in a vector space and the unit quaternions do not belong to a vector space but lie on a nonlinear manifold, the weighted sum of quaternion samples does not produce a unit quaternion estimate. To overcome this difficulty, a method of weighted mean computation for quaternions is derived in rotational space, leading to a quaternion with unit norm. A quaternion multiplication is used for predicted covariance computation and quaternion update, which makes a quaternion in a filter lie in the unit quaternion space. Since the quaternion process noise increases the uncertainty in attitude orientation, modeling it either as the vector part of a quaternion or as a rotation vector is considered. Simulation results illustrate that the proposed approach successfully estimates spacecraft attitude for large initial errors and high tip-off rates, and modeling the quaternion process noise as a rotation vector is more optimal than handling it as the vector part of a quaternion.

  • PDF

Standard Calibration for Broadband and Narrowband Filters of KHAO 0.4 m Telescope

  • Ahn, Hojae;Jeong, Inhwan;Paek, Gregory S.H.;Lee, Sumin;Kim, Changgon;Pak, Soojong;Shim, Hyunjin;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.76.1-76.1
    • /
    • 2021
  • Maemi Dual Field Telescope System (MDFTS) is a dual telescope system located at Kyung Hee University. The system consists of 0.4 m telescope and 0.1 m telescope for wide-field observation. The 0.4 m telescope provides photometric observation which covers a field of view of 21'×16'. It has been used for various purposes with Johnson-Cousins UBVRI broadband filter system, e.g., SomangNet and Intensive Monitoring Survey of Nearby Galaxies. In this poster, we present the standard calibration result for our broadband filter system. Also, we suggest a new usage of the KHAO 0.4m telescope which is narrowband photometry by demonstrating the standard calibration of H-alpha filter. For flux calibration, not only R filter but also V filter is used for compensating the central wavelength discrepancy between R filter and H-alpha filter.

  • PDF

Filtering Performance Analyizing for Relative Navigation Using Single Difference Carrier-Phase GPS (GPS 신호의 단일차분을 이용한 편대위성의 상대위치 결정을 위한 필터링 성능 분석)

  • Park, In-Kwan;Park, Sang-Young;Choi, Kyu-Hong;Choi, Sung-Ki;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • Satellite formation flying can provide the platform for interferometric observation to acquire the precise data and ensure the flexibility for space mission. This paper presents development and verification of an algorithm to estimate the baseline between formation flying satellites. To estimate a baseline(relative navigation) in real time, EKF(Extended Kalman Filter) and UKF(Unscented Kalman Filter) are used. Measurements for updating a state-vector in Kalman Filter are GPS single difference data. In results, The position errors in estimated baseline are converged to less than ${\pm}1m$ in both EKF and UKF. And as using the two types of Kalman filter, it is clear that the unscented Kalman filter shows a relatively better performance than the extended Kalman filter by comparing an efficiency to the model which has a non-linearity.