• Title/Summary/Keyword: filter performance

Search Result 4,620, Processing Time 0.029 seconds

A Study on the Analysis of Optimal Asset Allocation and Welfare Improvemant Factors through ESG Investment (ESG투자를 통한 최적자산배분과 후생개선 요인분석에 관한 연구)

  • Hyun, Sangkyun;Lee, Jeongseok;Rhee, Joon-Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.171-184
    • /
    • 2023
  • Purpose: First, this paper suggests an alternative approach to find optimal portfolio (stocks, bonds and ESG stocks) under the maximizing utility of investors. Second, we include ESG stocks in our optimal portfolio, and compare improvement of welfares in the case with and without ESG stocks in portfolio. Methods: Our main method of analysis follows Brennan et al(2002), designed under the continuous time framework. We assume that the dynamics of stock price follow the Geometric Brownian Motion (GBM) while the short rate have the Vasicek model. For the utility function of investors, we use the Power Utility Function, which commonly used in financial studies. The optimal portfolio and welfares are derived in the partial equilibrium. The parameters are estimated by using Kalman filter and ordinary least square method. Results: During the overall analysis period, the portfolio including ESG, did not show clear welfare improvement. In 2017, it has slightly exceeded this benchmark 1, showing the possibility of improvement, but the ESG stocks we selected have not strongly shown statistically significant welfare improvement results. This paper showed that the factors affecting optimal asset allocation and welfare improvement were different each other. We also found that the proportion of optimal asset allocation was affected by factors such as asset return, volatility, and inverse correlation between stocks and bonds, similar to traditional financial theory. Conclusion: The portfolio with ESG investment did not show significant results in welfare improvement is due to that 1) the KRX ESG Leaders 150 selected in our study is an index based on ESG integrated scores, which are designed to affect stability rather than profitability. And 2) Korea has a short history of ESG investment. During the limited analysis period, the performance of stock-related assets was inferior to bond assets at the time of the interest rate drop.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

Spectral Modeling of Haegeum Using Cepstral Analysis (캡스트럼 분석을 이용한 해금의 스펙트럼 모델링)

  • Hong, Yeon-Woo;Kang, Myeong-Su;Cho, Sang-Jin;Kim, Jong-Myon;Lee, Jung-Chul;Chong, Ui-Pil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.243-250
    • /
    • 2010
  • This paper proposes a spectral modeling of Korean traditional instrument, Haegeum, using cepstral analysis to naturally describe Haegeum sounds varying with time. To get a precise result of cepstral analysis, we set the frame size to 3 periods of input signal and more cepstral coefficients are used to extract formants. The performance is enhanced by flexibly controlling the cutoff frequency of bandpass filter depending on the resonances in the synthesis process of sinusoidal components and the deleting peaks remained in the residual signal. To detect the change of pitch, we divide the input frames into silence, attack, and sustain region and determine which region the current frame is involved in. Then, the proposed method readjusts the frame size according to the fundamental frequency in the case of the current frame is in attack region and corrects the extraction errors of the fundamental frequency for the frames in sustain region. With these processes, the synthesized sounds are much more similar to the originals. The evaluation result through the listening test by a Haegeum player says that the synthesized sounds are almost similar to originals (96~100 % similar to the original sounds).

A New Integrated Suppression Algorithm Based on Combined Power of Acoustic Echo and Background Noise (결합된 음향학적 반향 및 배경 잡음 전력에 기반한 새로운 통합 제거 알고리즘)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.402-409
    • /
    • 2010
  • In this paper, we propose an efficient integrated suppression algorithm based on combined power of acoustic echo and background noise. The proposed method combines the acoustic echo and noise power by the weighting parameter derived from the decision rule based on the estimated echo to noise power ratio. Therefore, in the proposed approach, the acoustic echo and noise signal are able to be reduced through only one suppression filter based on the estimated combined power. The proposed unified structure improves the problems of the residual echo and noise resulted from the conventional unified structure where the noise suppression (NS) operation is placed after the acoustic echo suppression (AES) algorithm or vice versa. The performance of the proposed algorithm is evaluated by the objective test under various environments and yields better results compared with the conventional scheme.

Effect of the Configuration of Contact Type Textile Electrode on the Performance of Heart Activity Signal Acquisition for Smart Healthcare (스마트 헬스케어를 위한 심장활동 신호 검출용 접촉식 직물전극의 구조가 센싱 성능에 미치는 영향)

  • Cho, Hyun-Seung;Koo, Hye-Ran;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Jeong-Hwan;Kwak, Hwy-Kuen;Ko, Yun-Su;Oh, Yun-Jung;Park, Su-Youn;Kim, Sin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.63-76
    • /
    • 2018
  • The purpose of this study was to investigate the effect of contact type textile electrode structure on heart activity signal acquisition for smart healthcare. In this study, we devised six contact type textile electrodes whose electrode size and configuration were manipulated for measuring heart activity signals using computerized embroidery. We detected heart activity signals using a modified lead II and by attaching each textile electrode to the chest band in four healthy male subjects in a standing static posture. We measured the signals four times repeatedly for all types of electrodes. The heart activity signals were sampled at 1 kHz using a BIOPAC ECG100, and the detected original signals were filtered through a band-pass filter. To compare the performance of heart activity signal acquisition among the different structures of the textile electrodes, we conducted a qualitative analysis using signal waveform and size as parameters. In addition, we performed a quantitative analysis by calculating signal power ratio (SPR) of the heart activity signals obtained through each electrode. We analyzed differences in the performance of heart activity signal acquisition of the six electrodes by performing difference and post-hoc tests using nonparametric statistic methods on the calculated SPR. The results showed a significant difference both in terms of qualitative and quantitative aspects of heart activity signals among the tested contact type textile electrodes. Regarding the configurations of the contact type textile electrodes, the three-dimensionally inflated electrode (3DIE) was found to obtain better quality signals than the flat electrode. However, regarding the electrode size, no significant difference was found in performance of heart signal acquisition for the three electrode sizes. These results suggest that the configuration method (flat/3DIE), which is one of the two requirements of a contact type textile electrode structure for heart activity signal acquisition, has a critical effect on the performance of heart activity signal acquisition for wearable healthcare. Based on the results of this study, we plan to develop a smart clothing technology that can monitor high-quality heart activity without time and space constraints by implementing a clothing platform integrated with the textile electrode and developing a performance improvement plan.

Modeling of Sensorineural Hearing Loss for the Evaluation of Digital Hearing Aid Algorithms (디지털 보청기 알고리즘 평가를 위한 감음신경성 난청의 모델링)

  • 김동욱;박영철
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.59-68
    • /
    • 1998
  • Digital hearing aids offer many advantages over conventional analog hearing aids. With the advent of high speed digital signal processing chips, new digital techniques have been introduced to digital hearing aids. In addition, the evaluation of new ideas in hearing aids is necessarily accompanied by intensive subject-based clinical tests which requires much time and cost. In this paper, we present an objective method to evaluate and predict the performance of hearing aid systems without the help of such subject-based tests. In the hearing impairment simulation(HIS) algorithm, a sensorineural hearing impairment medel is established from auditory test data of the impaired subject being simulated. Also, the nonlinear behavior of the loudness recruitment is defined using hearing loss functions generated from the measurements. To transform the natural input sound into the impaired one, a frequency sampling filter is designed. The filter is continuously refreshed with the level-dependent frequency response function provided by the impairment model. To assess the performance, the HIS algorithm was implemented in real-time using a floating-point DSP. Signals processed with the real-time system were presented to normal subjects and their auditory data modified by the system was measured. The sensorineural hearing impairment was simulated and tested. The threshold of hearing and the speech discrimination tests exhibited the efficiency of the system in its use for the hearing impairment simulation. Using the HIS system we evaluated three typical hearing aid algorithms.

  • PDF

Performance Evaluation of Anaerobic Bioreactors in Treating Swine Wastewater (양돈폐수 처리를 위한 혐기성 생물반응기의 성능 비교)

  • Kim, Jong-Soo;Lee, Gook-Hee;Sa, Tongmin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.2047-2058
    • /
    • 2000
  • The effects of operating parameters on performance of upflow anaerobic sludge blanket(UASB). anaerobic filter(AF), and two-stage anaerobic sludge bed filter (ASBF) bioreactors in treating swine wastewater were evaluated by operating the lab-scale bioreactors upto hydraulic retention time(HRT) of 1 day and organic loading rate (OLR) of $5.1kg-COD/m^3{\cdot}d$ for 200 days. Swine wastewaters of which characteristics were affected by types of hog raising and seasons contained high concentrations of COD, SS, and ammonia. Inoculation of the bioreactors with waste sludge from anaerobic treatment facility of local municipal wastewater treatment plant was effective in developing biomass in the bioreactors. Acclimation period of the bioreactors with swine wastewaters required approximately 40 days, but that for AF and two-stage ASBF, which were filled with media, was faster than VASB. The bioreactors showed high and stable COD removal efficiency of 77~91% at influent T-N concentrations of 370~800mg/L but low and unstable COD removal efficiency of 24~94% at influent T-N concentrations of 760~1,310mg/L. It is essential to remove ammonia prior to anaerobic treatment since the concentrations of ammonia in swine wastewaters showed toxic effects to methanogenic bacteria. The bioreactors were effective in treating swine wastewaters with COD removal efficiency of 78.9~81.5% and biogas generation rate of $0.39{\sim}0.59m^3/kg-COD_r$ at OLR of $1.1{\sim}2.2kg-COD/m^3{\cdot}d$: however, an increase of OLR by reducing HRT and increasing influent COD caused decrease of COD removal efficiency. The extent of decrease in COD removal efficiency was higher in UASB than AF and two-stage ASBF. AF and two-stage ASBF anaerobic bioreactors were effective in treating varing characteristics of swine wastewaters since they showed high and stable COD removal efficiency at high OLR due to effective retention of biomass by media and staging.

  • PDF

Photocatalytic Treatment of Waste Air Containing Malodor and VOC by Photocatalytic Reactor Equipped with the Cartridges Containing the Media Carrying Photocatalyst (광촉매 카트리지를 활용한 악취 및 VOC를 함유한 폐가스의 광촉매처리)

  • Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.80-86
    • /
    • 2013
  • In this study, the photocatalytic reactor system equipped with photocatalyst-carrying-silica-media cartridges [photocatalytic reactor system (1)] was used to perform the treatment of waste air containing malodor and volatile organic compound (VOC). The result of its performance was evaluated and compared with that of the photocatalytic reactor system equipped with commercial photocatalyst-carrying-nonwoven filter-media cartridges [photocatalytic reactor system (2)]. In case of photocatalytic reactor system (1), at the 1st stage of run the removal efficiencies of ethanol and toluene continued to be 80% and 20%, respectively. However, unlike toluene, the removal efficiency of ethanol dropped to 40% at the end of the 1st stage of run. The removal efficiency of hydrogen sulfide decreased from 100% to 90%. At the 2nd stage of its run the removal efficiency of ethanol decreased to 10% while the removal efficiencies of hydrogen sulfide and toluene remained as same as 90% and 20%, respectively, even though the inlet load of toluene increased by factor of four. In the 3rd stage of its run, as the result of application of aluminium-coated reflector film to the inner wall of photocatalytic reactor system, the removal efficiencies of ethanol and toluene increased by 5% to be 15% and 25%, respectively. In case of photocatalytic reactor system (2), at the 1st stage of its run, the removal efficiencies of ethanol, hydrogen sulfide and toluene continued to be 10%, 97% and 100%, respectively. However, at 2nd stage of its run their removal efficiencies became 5%, 95% and 2~3%, respectively, which showed that the removal efficiencies of ethanol and hydrogen sulfide decreased insignificantly while the removal efficiency of toluene dropped significantly from the perfect elimination. Moreover, the reflector film did not affect the performance of photocatalytic reactor system (2) at all. Therefore the removal of ethanol, hydrogen sulfide and toluene by photocatalytic reactor system (2) was mainly attributed to hydrophobic adsorption of its nonwoven filter media and its extent of photocatalytic removal turned out to be negligible, compared to that of photocatalytic reactor system (1).

Compression Sensing Technique for Efficient Structural Health Monitoring - Focusing on Optimization of CAFB and Shaking Table Test Using Kobe Seismic Waveforms (효율적인 SHM을 위한 압축센싱 기술 - Kobe 지진파형을 이용한 CAFB의 최적화 및 지진응답실험 중심으로)

  • Heo, Gwang-Hee;Lee, Chin-Ok;Seo, Sang-Gu;Jeong, Yu-Seung;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.23-32
    • /
    • 2020
  • The compression sensing technology, CAFB, was developed to obtain the raw signal of the target structure by compressing it into a signal of the intended frequency range. At this point, for compression sensing, the CAFB can be optimized for various reference signals depending on the desired frequency range of the target structure. In addition, optimized CAFB should be able to efficiently compress the effective structural answers of the target structure even in sudden/dangerous conditions such as earthquakes. In this paper, the targeted frequency range for efficient structural integrity monitoring of relatively flexible structures was set below 10Hz, and the optimization method of CAFB for this purpose and the seismic response performance of CAFB in seismic conditions were evaluated experimentally. To this end, in this paper, CAFB was first optimized using Kobe seismic waveform, and embedded it in its own wireless IDAQ system. In addition, seismic response tests were conducted on two span bridges using Kobe seismic waveform. Finally, using an IDAQ system with built-in CAFB, the seismic response of the two-span bridge was wirelessly obtained, and the compression signal obtained was cross-referenced with the raw signal. From the results of the experiment, the compression signal showed excellent response performance and data compression effects in relation to the raw signal, and CAFB was able to effectively compress and sensitize the effective structural response of the structure even in seismic situations. Finally, in this paper, the optimization method of CAFB was presented to suit the intended frequency range (less than 10Hz), and CAFB proved to be an economical and efficient data compression sensing technology for instrumentation-monitoring of seismic conditions.

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.