• Title/Summary/Keyword: filter paper

Search Result 8,889, Processing Time 0.033 seconds

A Single-Channel Speech Dereverberation Method Using Sparse Prior Imposition in Reverberation Filter Estimation (반향 필터 추정에서 성김 특성을 이용한 단일채널 음성반향제거 방법)

  • Zee, Min-Seon;Park, Hyung-Min
    • Phonetics and Speech Sciences
    • /
    • v.5 no.4
    • /
    • pp.227-232
    • /
    • 2013
  • Since a reverberation filter is generally much shorter than the corresponding dereverberation filter, a single-channel speech dereverberation method based on reverberation filter estimation has been developed to improve its performance. Unfortunately, a typical reverberation filter still requires too many coefficients to be accurately estimated using limited speech observations. In order to exploit sparseness of reverberation filter coefficients, in this paper, we present an algorithm to impose a sparse prior to the process of reverberation filter estimation. Simulation results demonstrate that the sparse prior imposition further improves performance of the speech dereverberation method based on reverberation filter estimation.

Design of Nonlinear Fixed-Interval Smoothing Filter and Its Application to SDINS

  • Yu, Jae-Jong;Lee, Jang-Gyu;Hong, Hyun-Su;Han, Hyung-Seok;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.177.4-177
    • /
    • 2001
  • In this paper, we propose a new type of nonlinear fixed interval smoothing filter which is modified from the existing nonlinear smoothing filter. A nonlinear smoothing filter is derived from two-filter formulas. For the backward filter, the propagation and update equation of error states are derived. Particularly the modified update equation of the backward filter use the estimated error terms from the forward filter. Smoothing algorithm is altered into the compatible form with the new type of the backward fitter. An advantage of the proposed algorithm is more efficient than the existing one because propagation in backward filter is very simple from the implementation point of view. We apply the proposed nonlinear smoothing ...

  • PDF

Fabrication of a CNT Filter for a Microdialysis Chip

  • An, Yun-Ho;Song, Si-Mon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.279-284
    • /
    • 2006
  • This paper describes the fabrication methods of a carbon nanotube (CNT) filter and a microdialysis chip. A CNT filter can help perform dialysis on a microfluidic chip. In this study, a membrane type of a CNT filter is fabricated and located in a microfluidic chip. The filter plays a role of a dialysis membrane in a microfluidic chip. In the fabrication process of a CNT filter, individual CNTs are entangled each other by amide bonding that is catalyzed by 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The chemically treated CNTs are shaped to form a CNT filter using a PDMS film-mold and vacuum filtering. Then, the CNT filter is sandwiched between PDMS substrates, and they are bonded together using a thin layer of PDMS prepolymer as adhesive. The PDMS substrates are fabricated to have a microchannel by standard photo-lithography technique.

An Optimal FIR Filter for Discrete Time-varying State Space Models (이산 시변 상태공간 모델을 위한 최적 유한 임펄스 응답 필터)

  • Kwon, Bo-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1183-1187
    • /
    • 2011
  • In this paper, an optimal FIR (Finite-Impulse-Response) filter is proposed for discrete time-varying state-space models. The proposed filter estimates the current state using measured output samples on the recent time horizon so that the variance of the estimation error is minimized. It is designed to be linear, unbiased, with an FIR structure, and is independent of any state information. Due to its FIR structure, the proposed filter is believed to be robust for modeling uncertainty or numerical errors than other IIR filters, such as the Kalman filter. For a general system with system and measurement noise, the proposed filter is derived without any artificial assumptions such as the nonsingular assumption of the system matrix A and any infinite covariance of the initial state. A numerical example show that the proposed FIR filter has better performance than the Kalman filter based on the IIR (Infinite- Impulse-Response) structure when modeling uncertainties exist.

Progressive Filter for Impulse Noise Reduction (임펄스 잡음제거를 위한 프로그레시브 필터)

  • Kim, Young-Ro;Dong, Sung-Soo
    • 전자공학회논문지 IE
    • /
    • v.49 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • In this paper, we propose a progressive filter for impulse noise reduction. The proposed method uses non-linear filter and linear filter progressively. Non-linear filter reduces abrupt noise pattern. Also, linear filter adjusts filtering direction according to an edge in the image which is filtered by non-linear filter. Thus, our proposed method not only preserves edge, but also reduces noise in uniform region. Experimental results show that our proposed method has better quality than those by existing non-linear and linear progressive filtering methods.

Adaptive Echo Canceller with Improved Convergence Speed (적응 반향 제거기의 수렴 속도 향상)

  • 김남선;임용훈;임종민;차일환;윤대희
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.111-114
    • /
    • 1991
  • This paper proposes an efficient adaptive echo canceller using pilot filter approach to achieve improved convergence speed. The pilot filter is an adaptive filter with only a few filter coefficients to filter the received signal for the purpose of whitening the signal. Thus the convergence speed of the main LMS-TDL filter combined with the pilot filter is improved. In the proposed echo canceller, an adaptive lattice predictor as the pilot filter is used and its inverse filter is used to equalize the distorted near end talker signal. Simulation results for colored signal show that the convergence speed of the proposed echo cancellation algorithm is faster than that of the conventional LMS-TDL echo cancellation algorithm.

A Study on the New Adaptive Notch Filter Based on All Pass Filter (All Pass Filter를 이용한 새로운 적응노치필터에 관한 연구)

  • 양윤기;이상욱
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.119-122
    • /
    • 1991
  • In this paper, a new adaptive IIR notch filter employing all pass filter is proposed. Proposed all pass filter is composed of all pole and all zero sections, each of which utilizes modulation lattice filter [11]. And, adaption algorithm for proposed notch filter is also derived. In addition, the error surface for proposed IIR adaptive notch filter is analyzed. Computer simulation results reveal that the proposed adaptation algorithm works well for low SNR(signal to noise ratio) single and multiple sinusoids. And it is shown that for estimation time varying frequency, the parameter which is related to notch bandwidth is important than any other parameters.

Examination of Dust Trapping Mechanism in a Metal Fiber Filter-bed (금속 섬유 필터층을 이용한 미세 분진 집진 성능 관찰)

  • 이경미;조영민
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.361-369
    • /
    • 2004
  • A metal fiber bed has seldom been applied to the practical filtration process despite its excellent mechanical and chemical stability. The filter-bed used in this work was highly porous with open structure, of which apparent porosity was 80 ∼ 90%. Although pressure loss across the filter-bed was very low, separation efficiency was found to be quite high. This paper focuses on the basic filtration mechanisms of a metal filter-bed and a thin ceramic filter from fly ash for reference. The experimental parameters were face velocity, dust loading and porosity of filter-bed. Pressure drop increased with increasing face velocity and dust feeding load for both filters. It also showed that dust particles deposited in the deep flow path, finally resulting in clogging the pore channels. It thereby indicates that the dominating mechanism of the metal filter-bed would be depth filtration. Meanwhile, the thin fly ash composite filters trapped the aerated dust mainly on the surface of the filter medium, so that the instantaneously formed dust layer might cause a steep increase of pressure drop across the filtration system.

A Tracking Filter Design of the Radar Beacon System for Automatic Take-off and Landing of Unmanned Aerial Vehicle (무인항공기 자동이착륙을 위한 레이다 비콘 시스템의 추적필터 설계)

  • Kim, Man-Jo;Hwang, Chi-Jung
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • This paper presents a tracking filter of radar beacon system (RBS) for automatic takeoff and landing of an unmanned aerial vehicle. The proposed tracking filter is designed as the decoupled tracking filter to reduce the computational burden. Also, an adaptive estimation method of the measurement error covariance is proposed to provide an improved tracking performance compared to the conventional decoupled tracking filter whenever the accuracy of RBS observations is degraded. 100 times Monte Carlo runs performed to analyze the performance of the proposed tracking filter in case of normal operation and degraded operations, respectively. The simulation results show that the proposed tracking filter provides the improved tracking accuracy in comparison with the conventional decoupled tracking filter.

Design of the Target Estimation Filter based on Particle Filter Algorithm for the Multi-Function Radar (파티클 필터 알고리즘을 이용한 다기능레이더 표적 추적 필터 설계)

  • Moon, Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.517-523
    • /
    • 2011
  • The estimation filter in radar systems must track targets' position within low tracking error. In the Multi-Function Radar(MFR), ${\alpha}-{\beta}$ filter and Kalman filter are widely used to track single or multiple targets. However, due to target maneuvering, these filters may not reduce tracking error, therefore, may lost target tracks. In this paper, a target tracking filter based on particle filtering algorithm is proposed for the MFR. The advantage of this method is that it can track targets within low tracking error while targets maneuver and reduce impoverishment of particles by the proposed resampling method. From the simulation results, the improved tracking performance is obtained by the proposed filtering algorithm.