• 제목/요약/키워드: film-less system

검색결과 180건 처리시간 0.025초

Microelectromechnical system 소자를 위한 박막형 2차전지용 $SnO_2$ 음극박막의 충방전 특성 평가 (Charge/Discharge Characteristics of $SnO_2$ thin film as an anode of thin film secondary battery for microelectromechanical system device)

  • 남상철;조원일;전은정;신영화;윤영수
    • 한국진공학회지
    • /
    • 제9권1호
    • /
    • pp.36-41
    • /
    • 2000
  • $SnO-2$ thin films for thin film secondary battery anode were deposited n glass substrate with stain-less steel collector and charge/discharge experiments were conducted to investigate feasibility of $SnO-2$ thin film as a new anode material. The as-deposited films were pure $SnO-2$ phase which is not related to deposition condition. The grain size on the surface of as-deposited films increased with increase of oxygen partial pressure. However, the grain size did not show any change above oxygen partial pressure of 80:20. The surface roughness of the as-deposited films increased after decreasing because of resputtering effect of oxygen negative ion in plasma. All films showed typical $SnO-2$ anode characteristics which has a side effect at the first cycle, which is not related to the deposition condition. The charge/discharge experiments of 200cycles indicated that capacity of $SnO-2$ films depended on oxygen contents and surface roughness. The cycle characteristics was determined by initial charge/discharge reaction. The $SnO-2$ film with low initial capacity showed more stable cycle characteristics than film with high initial capacity.

  • PDF

나노 가스 감지 소자의 특성에 미치는 촉매 구조의 영향 (Elect of Catalytic Configuration on Sensing Properties of Nano Gas Sensor)

  • 홍성제;;한정인
    • 한국전기전자재료학회논문지
    • /
    • 제18권10호
    • /
    • pp.917-923
    • /
    • 2005
  • In this paper, effect of catalytic configuration on the sensing properties of $SnO_2$ nanoparticle gas sensitive thick film was investigated. Two types of catalytic configuration, mono and binary, were made on the $SnO_2$ nanoparticle. In case of mono catalytic system, $3 wt\%$ Pd or Pt catalyst was doped onto the $SnO_2$ nanoparticle, respectively. In case of binary catalytic system, Pd and Pt was doped simultaneously with concentration ratio of 1:2 to 2:1 onto the $SnO_2$ nanoparticle. After doping, gas sensitive thick film was printed on alumina substrate and heat-treated at 450 to $600^{\circ}C$. Gas sensing properties was evaluated using 500 to 10,000 ppm $CH_4$ gas. As a result, gas sensitive thick film with binary catalytic system showed unstable phenomena that the gas sensitivity was changed according to aging time. In contrary, the mono catalytic system showed relatively stable phenomena despite of aging time. Especially, gas sensitive thick film doped with $3 wt\%$ Pt catalyst and heat-treated at $500^{\circ}C$ showed good sensing properties such as 0.57 of $R_{3500}/R_{1000}$ and very small variation within $3.5\%$ after aging for 5 hours, and response time was very short less than 20 seconds.

Impedance investigation of the surface film formed on aluminum alloy exposed to nuclear reactor emergency core coolant

  • Junlin Huang;Derek Lister;Xiaoliang Zhu;Shunsuke Uchida;Qinglan Xu
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1518-1527
    • /
    • 2023
  • A method was proposed for in-situ evaluating the thickness and resistivity of the oxide/hydroxide film formed on the surface of aluminum alloy exposed to sump water formed in the containment after a loss-of-coolant accident. The evaluation entailed fitting a model for the film impedance, which has film thickness and other variables describing the resistivity profile of the film along its thickness direction as fitting parameters, to the practically measured electrochemical impedance data. The obtained resistivity profiles implied that the films formed at pHs25℃ 7, 8, 9, 10, and 11 all had a duplex structure; compared to the outer layer in contact with the solution, the inner layer of the film had a much higher resistivity and was inferred to be denser and provide most of the protectiveness of the film. Both the thickness and the total resistance of the film decreased with the increasing solution pH25℃, suggesting that the films formed in more alkaline solutions had less protectiveness against corrosion, consistent with the increasing aluminum alloy corrosion rates previously identified.

열적 성장된 실리콘 질화막위에 산화 탄탈륨 초박막의 형성 (Formation of ultra-thin $Ta_{2}O_{5}$ film on thermal silicon nitrides)

  • 이재성;류창명;강신원;이정희;이용현
    • 전자공학회논문지A
    • /
    • 제32A권11호
    • /
    • pp.35-43
    • /
    • 1995
  • To obtain high quality of $Ta_{2}O_{5}$ film, two dielectric layers of $Si_{3}N_{4}$ and $Ta_{2}O_{5}$ were subsequently formed on Si wafer. Silicon nitride films were thermally grown in 10 Torr ammonia ambient by R.F induced heating system. The thickness of thermally grown $Si_{3}N_{4}$ film was able to be controlled in the range of tens $\AA$ due to the self-limited growth property. $Ta_{2}O_{5}$ film of 200$\AA$ thickness was then deposited on the as-grown $Si_{3}N_{4}$ film about 25$\AA$ thickness by sputtering method and annealed at $900^{\circ}C$in $O_{2}$ ambient for 1hr. Stoichiometry film was prepared by the annealing in oxygen ambient. Despite the high temperature anneal process, silicon oxide layer was not grown at the interface of the layered films because of the oxidation barrier effect of Si$_{3}$N$_{4}$ film. The fabricated $Ta_{2}O_{5}$/$Si_{3}N_{4}$ film showed low leakage current less than several nA and high dielectric breakdown strength.

  • PDF

Organic Vapor Phase Deposition 방식을 이용한 펜타센 유기박막트랜지스터의 제작 (Fabrication of Pentacene Thin Film Transistors by using Organic Vapor Phase Deposition System)

  • 정보철;송정근
    • 한국전기전자재료학회논문지
    • /
    • 제19권6호
    • /
    • pp.512-518
    • /
    • 2006
  • In this paper, we investigated the deposition of pentacene thin film on a large area substrate by Organic Vapor Phase Deposition(OVPD) and applied it to fabrication of Organic Thin Film Transistor(OTFT). We extracted the optimum deposition conditions such as evaporation temperature of $260^{\circ}C$, carrier gas flow rate of 10 sccm and chamber vacuum pressure of 0.1 torr. We fabricated 72 OTFTs on the 4 inch size Si Wafer, Which produced the average mobility of $0.1{\pm}0.021cm^2/V{\cdot}s$, average subthreshold slope of 1.04 dec/V, average threshold voltage of -6.55 V, and off-state current is $0.973pA/{\mu}m$. The overall performance of pentacene TFTs over 4 ' wafer exhibited the uniformity with the variation less than 20 %. This proves that OVPD is a suitable methode for the deposition of organic thin film over a large area substrate.

절단 원추형 전기점성 SFD 베어링 연구 (A Study on the Electroviscous(EV) Fluid Squeeze Film Damper(SFD) Bearing of the Truncated Cone Type)

  • 윤석철
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.8-13
    • /
    • 2003
  • Equivalent Reynolds equation of truncated cone type SFD bearing using nonnewtonian EV fluid is derived. The 3 nondimensional oil film pressures and its forces are obtained with axial and circumferential pressure gradient of bearing respectively, and dynamic characteristics for the stability of rotor-bearing system are obtaind through the governing equation for an elastic rotational shaft. It is shown that EV fluid is less sensitive to the changes of oil-film than newtonian fluids for dynamic characteristics. Therefore, results show that it is better to use an EV fluid with truncated cone type SFD bearing for the vibration control of rotational machines.

진공조의 잔류산소가 입방정질화붕소 박막 합성에 미치는 영향 (Effect of Residual Oxygen in a Vacuum Chamber on the Deposition of Cubic Boron Nitride Thin Film)

  • 오승근;김영만
    • 한국표면공학회지
    • /
    • 제46권4호
    • /
    • pp.139-144
    • /
    • 2013
  • c-BN(cubic boron nitride) is known to have extremely high hardness next to diamond, as well as very high thermal and chemical stability. The c-BN in the form of film is useful for wear resistant coatings where the application of diamond film is restricted. However, there is less practical application because of difficult control of processing variables for synthesis of c-BN film as well as unclear mechanism on formation of c-BN. Therefore, in the present study, the structural characterization of c-BN thin film were investigated using $B_4C$ target in r.f. magnetron sputtering system as a function of processing variables. c-BN films were coated on Si(100) substrate using $B_4C$ (99.5% purity). The mixture of nitrogen and argon was used for carrier gas. The deposition processing conditions were changed with substrate bias voltage, substrate temperature and base pressure. Fourier transform infrared microscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to analyze crystal structures and chemical binding energy of the films. In the case of the BN film deposited at room temperature, c-BN was formed in the substrate bias voltage range of -400 V~ -600 V. Less c-BN fraction was observed as deposition temperature increased and more c-BN fraction was observed as base pressure increased.

$CaO-P_2O_5-SiO_2$계 유리의 생체활성 (Bioactivity of $CaO-P_2O_5-SiO_2$ Glasses)

  • 조정식;김철영
    • 한국세라믹학회지
    • /
    • 제30권6호
    • /
    • pp.433-440
    • /
    • 1993
  • The bioactivity of glasses in the CaO-SiO2 system and CaO-P2O5-SiO2 system with less than 10mol% of P2O5 was investigated by in vitro test in simulated body flood(SBF). The formation of Ca.P film and hydroxyapatite on the surface of glasses after in vitro test was analysed by X-ray photoelectron spectoscopy (XPS), fourier transform infrared reflection spectroscopy (FT-IRRS), energy dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM) observation. In the early stage of Ca.P film formation after in vitro test for CaO-SiO2 and CaO-P2O5-SiO2 glasses, the rate of Ca.P film formation on the surface of the glasses was dependent of structural parameter (Y) evaluated from the glass composition. First, in the case of the glasses having Y value below 2, Ca.P film and SiO2-rich layer were formed simultaneously, and there were no differences of the rate of Ca.P film formation in terms of the Y values. Second, in the case of the glasses having Y value above 2, the SiO2-rich layer was formed, and then Ca.P.Si mixed layer was formed in the silica gel structure of the SiO2-rich layer, and finally the Ca.P film on the surface of SiO2-rich layer. The rate of Ca.P film formation delayed as the Y values increased. The rate of hydroxyapatite formation of glasses (the rate of transformation from Ca.P film to hydroxyapatite) seems to be propotional to the rate of Ca.P film formation and Y value. The rate of hydroxyapatite formation of glasses belonging to the second group was delayed as structural parameter increased, and the hydroxyapatite crystal showed spherical growth in the early reaction stage, and then showed silkworm-like linear growth as the reaction time increased.

  • PDF

Fabrication of ITO-less Sustain Electrodes for High Resolution Plasma Display Panel by X-Ray Lithographic Process

  • Ryu, Seung-Min;Yang, Dong-Yol;So, Jae-Yong;Park, Lee-Soon;Cheong, Hee-Woon;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.370-373
    • /
    • 2009
  • X-ray lithography was employed to fabricate ITO-less high resolution sustain electrodes for plasma display panel (PDP). A polyimide film based X-ray mask and Xray sensitive Ag electrode paste were fabricated to check their effect on the patterning of Ag electrodes with less than 30 ${\mu}m$ in width. The X-ray lithographic method was found to be useful for the high resolution sustain electrode patterns due to the high penetration power and low scattering property of X-ray source.

  • PDF

초음파 분무 열분해법을 이용한 구리산화물 박막 성장 (Growth of Copper Oxide Thin Films Deposited by Ultrasonic-Assisted Spray Pyrolysis Deposition Method)

  • 한인섭;박일규
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.516-521
    • /
    • 2018
  • Copper oxide thin films are deposited using an ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of substrate temperature and incorporation of a chelating agent on the growth of copper oxide thin films, the structural and optical properites of the copper oxide thin films are analyzed by X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), and UV-Vis spectrophotometry. At a temperature of less than $350^{\circ}C$, three-dimensional structures consisting of cube-shaped $Cu_2O$ are formed, while spherical small particles of the CuO phase are formed at a temperature higher than $400^{\circ}C$ due to a Volmer-Weber growth mode on the silicon substrate. As a chelating agent was added to the source solutions, two-dimensional $Cu_2O$ thin films are preferentially deposited at a temperature less than $300^{\circ}C$, and the CuO thin film is formed even at a temperature less than $350^{\circ}C$. Therefore the structure and crystalline phase of the copper oxide is shown to be controllable.