• Title/Summary/Keyword: film-electrodes

Search Result 792, Processing Time 0.026 seconds

Effect of Surface Treatment on Hydrogen Production of Cadmium Sulfide Particulate Film Electrodes (수소제조용 CdS 입자막 전극의 표면처리 효과)

  • Jang, Jum-Suk;Chang, Hye-Young;So, Won-Wook;Rhee, Young-Woo;Moon, Sang-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.11 no.3
    • /
    • pp.119-125
    • /
    • 2000
  • To improve the photochemical energy conversion efficiency and the stability of CdS particulate film electrode which is used to produce hydrogen from the aqueous $H_2S$ solution photoelectrochemically, surface treatment of this film was carried out using $TiCl_4$ solution. CdS particles for preparation of the films were synthesized by precipitation reaction of $Cd({NO_3})_2{\cdot}9H_2O$ and $Na_2S{\cdot}4H_2O$. Then, the CdS sol was hydrothermally treated for 12hr in an autoclave with the variation of treatment temperature to control the crystalline phase of particles. CdS film electrode was thus prepared by annealing at $400^{\circ}C$ for 12hr of the wet-film cast at room temperature, and subsequently surface treated with $TiCl_4$ solution. The electrodes were characterized using XRD, SEM, and the photocurrent meter. The photocurrents of Cds film electrodes prepared with surface treatment were up to two times higher than the electrodes without surface treatment, indicating about $4.0mA/cm^2$. Hydrogen production rate in a continuous flow system using photoelectrochemical or photochemical cells prepared with surface treatment also increased in proportion to the increase of photocurrents.

  • PDF

Effects of Sb doping on the Characteristis of $SnO_2$ Transparent Electrodes ($SnO_2$ 수용전극특성에 미치는 Sb첨가의 영향)

  • 이정한
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.3
    • /
    • pp.16-21
    • /
    • 1976
  • Transparent eloctroaes of polycrystalline till-oxide films doped with antimony are prepared on the substrate of microscopic cover g1ass by modified spray method and from SnCl4 Solution. Their electrical and optical properties are investigated in relation to the surface temperature of the substrate glass and to antimony concentration in the starting materials. The sheet.resiststrace of the film electrodes and transmittance for incandescent light depen on tile antimony concentration and surface temperature of substrates at the time of making films. The transmittance increases with decrease of sheet resistance of the film. The optimum sheet.resistance was obtianed in the case of the antimony concentration 0.6(%) approximately , and the max. transmittance was 93(%).

  • PDF

Characteristics of Silver Nanow ire Solution and Film Depending on Hydroxypropyl Methylcellulose Adhesion Promoter Addition (Hydroxypropyl methylcellulose 접착력 증진제 첨가에 따른 은 나노와이어 용액 및 필름의 특성 변화)

  • Seungju Kang;Kim
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.54-59
    • /
    • 2023
  • Silver nanowire-based transparent electrodes are very attractive as a next-generation flexible and transparent electrode that can replace ITO-based flexible electrodes because they have excellent conductivity, transmittance and mechanical flexibility. However, weak understanding of the silver nanowire solution for the fabrication of silver nanowire-based transparent electrodes often cause abnormal operation of the electrical device or peeling problem of the electrode films when applied to electronic devices. Here, we studied a Hydroxypropyl Methylcellulose (HPMC) adhesion promoter, which is one of the additives for silver nanowire solution, to improve the understanding of silver nanowire solution. In detail, it is characterized how the HPMC changes the properties of silver nanowire solution and silver nanowire film, which is fabricated with silver nanowire solution including the HPMC adhesion promoter. As the characteristics of solution, polar surface tension and dispersive surface tension were measured. As the film characteristics, surface energy, surface morphology, silver nanowire density, and sheet resistance were analyzed.

Enhancement of Dye-Sensitized Solar Cell Efficiency by Spherical Voids in Nanocrystalline ZnO Electrodes

  • Hieu, Hoang Nhat;Dao, Van-Duong;Vuong, Nguyen Minh;Kim, Dojin;Choi, Ho-Suk
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.458-464
    • /
    • 2014
  • Light scattering enhancement is widely used to enhance the optical absorption efficiency of dye-sensitized solar cells. In this work, we systematically analyzed the effects of spherical voids distributed as light-scattering centers in photoanode films made of an assembly of zinc oxide nanoparticles. Spherical voids in electrode films were formed using a sacrificial template of polystyrene (PS) spheres. The diameter and volume concentration of these spheres was varied to optimize the efficiency of dye-sensitized solar cells. The effects of film thickness on this efficiency was also examined. Electrochemical impedance spectroscopy was performed to study electron transport in the electrodes. The highest power conversion efficiency of 4.07 % was observed with $12{\mu}m$ film thickness. This relatively low optimum thickness of the electrode film is due to the enhanced light absorption caused by the light scattering centers of voids distributed in the film.

Electrochemical Impedance Analysis of Polyaniline-Film on Tungsten Electrodes (텅스텐 전극에 입힌 폴리아닐린의 전기화학적 임피던스)

  • Chon, Jung-Kyoon;Min, Byoung Hoon
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.37-43
    • /
    • 1996
  • The electrochemical impedance spectra of polyaniline film coated on tungsten electrodes by cyclic voltammetry have been measured in 0.1 M aqueous sulfuric acid solution. An electrochemical cell composed of large redox capacitance and low resistance of PANI-film in series was in agreement with the conductive behavior reported at these potentials. When the PANI was coated on bare tungsten, the electrolytic resistance was only observed. However, on the oxidized tungsten instead of bare tungsten, the resistance of tungsten oxide and the contact resistance between PANI and tungsten oxide were additionally observed. Equivalent electrical circuits have been deduced from the impedance data. It was therfore possible to obtain the parameters of the ionic mass transport within the film.

  • PDF

Copper, aluminum based metallization for display applications (표시소자 응용을 위한 copper, aluminum 박막의 성장과 특성)

  • 김형택;배선기
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.340-351
    • /
    • 1995
  • Electrical, physical and optical properties of Aluminum(Al), Copper(Cu) thin films were investigated in order to establish the optimum sputtering parameters in Liquid Crystal Display (LCD) panel applications. DC-magnetron sputtered film on coming 7059 samples were fabricated with variations of deposition power densities, deposition pressures and substrate temperatures. Low resistivity films(AI;2.80 .mu..ohm.-cm, Cu:1.84 .mu..ohm-cm),which lower than the reported values, were obtained under sputtering parameters of power density(250W), substrate temperature(450-530.deg. C) and 5*10$\^$-3/ Torr deposition pressure. Expected columnar growth and stable grain growth of both films was observed through the Scanning Electron Microscope(SEM) micrographs. Dependency of the applicable defect-free film density upon depositon power and temperature was also characterized. Not too noticable variations in X-ray diffraction patterns were remarked under the alterations of sputtering parameters. High optical reflectivities of Al, Cu films, approximately 70-90 %, showed high degree of surface flatness.

  • PDF

Electrical Characteristics of Pentacene Thin Film Transistors.

  • Kim, Dae-Yop;Lee, Jae-Hyuk;Kang, Dou-Youl;Choi, Jong-Sun;Kim, Young-Kwan;Shin, Dong-Myung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.69-70
    • /
    • 2000
  • There are currently considerable interest in the applications of conjugated polymers, oligomers, and small molecules for thin-film electronic devices. Organic materials have potential advantages to be utilized as semiconductors in field-effect transistors and light-emitting diodes. In this study, pentacene thin-film transistors (TFTs) were fabricated on glass substrate. Aluminums were used for gate electrodes. Silicon dioxide was deposited as a gate insulator by PECVD and patterned by reactive ion etching (R.I.E). Gold was used for the electrodes of source and drain. The active semiconductor pentacene layer was thermally evaporated in vacuum at a pressure of about $10^{-8}$ Torr and a deposition rate $0.3{\AA}/s$. The fabricated devices exhibited the field-effect mobility as large as 0.07 $cm^2/V.s$ and on/off current ratio as larger than $10^7$.

  • PDF

Synthesis of Li2PtO3 Thin Film Electrode by an Electrostatic Spray Deposition Technique

  • Oh, Heung-Min;Kim, Ji-Young;Lee, Kyung-Keun;Chung, Kyung-Yoon;Kim, Kwang-Bum
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.45-49
    • /
    • 2010
  • $Li_2PtO_3$ thin film electrodes, which might be possible candidate for the cathode materials for implantable batteries, were synthesized using an electrostatic spray deposition (ESD) technique onto a platinum foil substrate. Single phase $Li_2PtO_3$with a structure similar to layered $LiCoO_2$ structure were synthesized by spraying a precursor solution of $CH_3CO_2Li2H_2O$ in ethanol onto a Pt substrate at temperatures ranging from 200 to $400^{\circ}C$ followed by annealing at above $600^{\circ}C$. Lithium carbonate was the only major phase at temperatures up to $500^{\circ}C$. The X-ray diffraction (XRD) peaks of the Pt foil substrate and lithium carbonate disappeared at temperatures >$600^{\circ}C$. The volumetric capacity of the $Li_2PtO_3$ thin film synthesized using the ESD technique was approximately 817 mAh/$cm^3$, which exceeded that of $LiCoO_2$ (711 mAh/$cm^3$).