• Title/Summary/Keyword: film uniformity

Search Result 410, Processing Time 0.026 seconds

A Study on the Method for the Local Transmittance Measurements of the Ocular Lens (안경 렌즈의 국소적 투과율 측정을 위한 방법에 관한 연구)

  • Park, Sang-Kook;Ri, Hyeong-Cheol;Youk, Do-Jin;Sung, Duk-Yong;Kang, Sung-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.4
    • /
    • pp.471-477
    • /
    • 2014
  • Purpose: We have analyzed the transmittance distribution of the ocular lens using local transmittance microscope to investigate the optical homogeneity of the lens. Methods: The transmittance of the laser which is focused on the surface of the ocular lens was measured by using the photo-detector and lock-in amplifier and analyzed. Multi-coated, uncoated, and progressive lenses were analyzed. Results: In the measurement of the progressive lens and a physical stimulated lens, local transmittance microscopy analysis showed a high degree of match with the measurement results through the optical microscope. In addition, the average value of the transmittance is reduced and the standard deviation was increased in the presence of optical defects. In unstimulated lens, there are a large impact on transmittance whether the anti-reflective coating is presence or absence in both the local transmittance microscopy and general transmittance analysis. Conclusions: The distribution of the transmittance measured by local transmission microscopy were changed when the various stimulus is applied to the lenses. These analyzes by local transmission microscopy can be utilized as a way to evaluate or determine the uniformity of the coating film or lens.

Application of Modified Mupit for the Recurrent Vulva Cancer in Brachytherapy

  • Kim, Jong-Sik;Jung, Chun-Young;Oh, Dong-Gyoon;Song, Ki-Won;Park, Young-Hwan
    • 대한방사선치료학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.23-26
    • /
    • 2005
  • Introduction: To evaluate whether modified MUPIT applicator can effectively eradicate recurrent tumor in uterine cervix cancer and reduce rectal complication after complete radiation treatment. Methods and Materials: Modified MUPIT applicator basically consists of an acrylic cylinder with flexible brain applicator , an acrylic template with a predrilled array of holes that serve as guides for interstitial needles and interstitial needles. CT scan was performed to determine tumor volume and the position of interstitial needles. Modified MUPIT applicator was applied to patient in operation room and the accuracy for position of interstitial needles in tumor volume was confirmed by CTscan. Brachytherapy was delivered using modified MUPIT applicator and RALS (192-Ir HDR) after calculated computer planning by orthogonal film. The daily dose was 600cGy and the total dose was delivered 3000cGy in tumor volume by BID. Rectal dose was measured by TLD at 5 points so that evaluated the risk of rectal complication. Result: The application of modified MUPIT applicator improved dramatically dose distributions in tumor volume and follow-up of 3 month for this patient was clinically partial response without normal tissue complication, Rectal dose was measured 34.1cGy, 57.1cGy, 103.8cGy, 162.7cGy, 165.7cGy at each points, especially the rectal dose including previous EBRT and ICR was 34.1cGy, 57.1cGy Conclusion: Patients with locally recurrent tumor in uterine cervix cancer treated with modified MIUPIT applicator can expect reasonable rates of local control. The advantages of the system are the fixed geometry Provided by the template and cylinders, and improved dose distributions in irregular tumor volume without rectal complication

  • PDF

Superconducting Thick Film by Lateral Field Assisted EPD (측면보조전계 인가 전기영동전착 초전도후막)

  • 전용우;소대화;조용준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.679-685
    • /
    • 2004
  • Although the electrophoretic deposition method has the advantage of simple processing procedure, less fabrication facilities, and easier control for deposition thickness and wire length, providing economical and technical merits, it also has the disadvantages of cracking and porosity phenomena, requiring an improved processing method for higher particle density and constant particle orientation. we have developed an optimization method to increase the particle density and to unify its orientation, and have performed a study to overcome the cracking and porosity problems in the fabricated superconductor. In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternate voltage vertically has been developed for the first time and applied to the electrophoretic deposition process. The applied alternate electric field caused a force to be exerted on each YBCO particle and resulted in a rotation of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. We name this process as the shaky-aligned electrophoretic deposition method. For commercial utilization and efficiency, in this dissertation, alternating voltage of 60 Hz and 25 ∼ 120 V/cm was proposed to apply it as a subsidiary source for shaky-flow deposition so that the fabricated thin film showed uniform surface morphology with less voids and cracks and Tc,zero of 90 K and the critical current density of 3419 A/$cm^2$.

Synthesis of Uniformly Doped Ge Nanowires with Carbon Sheath

  • Kim, Tae-Heon;;Choe, Sun-Hyeong;Seo, Yeong-Min;Lee, Jong-Cheol;Hwang, Dong-Hun;Kim, Dae-Won;Choe, Yun-Jeong;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.289-289
    • /
    • 2013
  • While there are plenty of studies on synthesizing semiconducting germanium nanowires (Ge NWs) by vapor-liquid-solid (VLS) process, it is difficult to inject dopants into them with uniform dopants distribution due to vapor-solid (VS) deposition. In particular, as precursors and dopants such as germane ($GeH_4$), phosphine ($PH_3$) or diborane ($B_2H_6$) incorporate through sidewall of nanowire, it is hard to obtain the structural and electrical uniformity of Ge NWs. Moreover, the drastic tapered structure of Ge NWs is observed when it is synthesized at high temperature over $400^{\circ}C$ because of excessive VS deposition. In 2006, Emanuel Tutuc et al. demonstrated Ge NW pn junction using p-type shell as depleted layer. However, it could not be prevented from undesirable VS deposition and it still kept the tapered structures of Ge NWs as a result. Herein, we adopt $C_2H_2$ gas in order to passivate Ge NWs with carbon sheath, which makes the entire Ge NWs uniform at even higher temperature over $450^{\circ}C$. We can also synthesize non-tapered and uniformly doped Ge NWs, restricting incorporation of excess germanium on the surface. The Ge NWs with carbon sheath are grown via VLS process on a $Si/SiO_2$ substrate coated 2 nm Au film. Thin Au film is thermally evaporated on a $Si/SiO_2$ substrate. The NW is grown flowing $GeH_4$, HCl, $C_2H_2$ and PH3 for n-type, $B_2H_6$ for p-type at a total pressure of 15 Torr and temperatures of $480{\sim}500^{\circ}C$. Scanning electron microscopy (SEM) reveals clear surface of the Ge NWs synthesized at $500^{\circ}C$. Raman spectroscopy peaked at about ~300 $cm^{-1}$ indicates it is comprised of single crystalline germanium in the core of Ge NWs and it is proved to be covered by thin amorphous carbon by two peaks of 1330 $cm^{-1}$ (D-band) and 1590 $cm^{-1}$ (G-band). Furthermore, the electrical performances of Ge NWs doped with boron and phosphorus are measured by field effect transistor (FET) and they shows typical curves of p-type and n-type FET. It is expected to have general potentials for development of logic devices and solar cells using p-type and n-type Ge NWs with carbon sheath.

  • PDF

Electrochemical Characterization of Anti-Corrosion Film Coated Metal Conditioner Surfaces for Tungsten CMP Applications (텅스텐 화학적-기계적 연마 공정에서 부식방지막이 증착된 금속 컨디셔너 표면의 전기화학적 특성평가)

  • Cho, Byoung-Jun;Kwon, Tae-Young;Kim, Hyuk-Min;Venkatesh, Prasanna;Park, Moon-Seok;Park, Jin-Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.1
    • /
    • pp.61-66
    • /
    • 2012
  • Chemical Mechanical Planarization (CMP) is a polishing process used in the microelectronic fabrication industries to achieve a globally planar wafer surface for the manufacturing of integrated circuits. Pad conditioning plays an important role in the CMP process to maintain a material removal rate (MRR) and its uniformity. For metal CMP process, highly acidic slurry containing strong oxidizer is being used. It would affect the conditioner surface which normally made of metal such as Nickel and its alloy. If conditioner surface is corroded, diamonds on the conditioner surface would be fallen out from the surface. Because of this phenomenon, not only life time of conditioners is decreased, but also more scratches are generated. To protect the conditioners from corrosion, thin organic film deposition on the metal surface is suggested without requiring current conditioner manufacturing process. To prepare the anti-corrosion film on metal conditioner surface, vapor SAM (self-assembled monolayer) and FC (Fluorocarbon) -CVD (SRN-504, Sorona, Korea) films were prepared on both nickel and nickel alloy surfaces. Vapor SAM method was used for SAM deposition using both Dodecanethiol (DT) and Perfluoroctyltrichloro silane (FOTS). FC films were prepared in different thickness of 10 nm, 50 nm and 100 nm on conditioner surfaces. Electrochemical analysis such as potentiodynamic polarization and impedance, and contact angle measurements were carried out to evaluate the coating characteristics. Impedance data was analyzed by an electrical equivalent circuit model. The observed contact angle is higher than 90o after thin film deposition, which confirms that the coatings deposited on the surfaces are densely packed. The results of potentiodynamic polarization and the impedance show that modified surfaces have better performance than bare metal surfaces which could be applied to increase the life time and reliability of conditioner during W CMP.

Chemistry of mist deposition of organic polymer PEDOT:PSS on crystalline Si

  • Shirai, Hajime;Ohki, Tatsuya;Liu, Qiming;Ichikawa, Koki
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.388-388
    • /
    • 2016
  • Chemical mist deposition (CMD) of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was investigated with cavitation frequency f, solvent, flow rate of nitrogen, substrate temperature $T_s$, and substrate dc bias $V_s$ as variables for efficient PEDOT:PSS/crystalline (c-)Si heterojunction solar cells (Fig. 1). The high-speed camera and differential mobility analysis characterizations revealed that average size and flux of PEDOT:PSS mist depend on f, solvent, and $V_s$. The size distribution of mist particles including EG/DI water cosolvent is also shown at three different $V_s$ of 0, 1.5, and 5 kV for a f of 3 MHz (Fig. 2). The size distribution of EG/DI water mist without PEDOT:PSS is also shown at the bottom. A peak maximum shifted from 300-350 to 20-30 nm with a narrow band width of ~150 nm for PEDOT:PSS solution, whose maximum number density increased significantly up to 8000/cc with increasing $V_s$. On the other hand, for EG/water cosolvent mist alone, the peak maximum was observed at a 72.3 nm with a number density of ~700/cc and a band width of ~160 nm and it decreased markedly with increasing $V_s$. These findings were not observed for PEDOT:PSS/EG/DI water mist. In addition, the Mie scattering image of PEDOT:PSS mist under white bias light was not observed at $V_s$ above 5 kV, because the average size of mist became smaller. These results imply that most of solvent is solvated in PEDOT:PSS molecule and/or solvent is vaporized. Thus, higher f and $V_s$ generate preferentially fine mist particle with a narrower band width. Film deposition occurred when $V_s$ was impressed on positive to a c-Si substrate at a Ts of $30-40^{\circ}C$, whereas no deposition of films occurred on negative, implying that negatively charged mist mainly provide the film deposition. The uniform deposition of PEDOT:PSS films occurred on textured c-Si(100) substrate by adjusting $T_s$ and $V_s$. The adhesion of CMD PEDOT:PSS to c-Si enhanced by $V_s$ conspicuously compared to that of spin-coated film. The CMD PEDOT:PSS/c-Si solar cell devices on textured c-Si(100) exhibited a ${\eta}$ of 11.0% with the better uniformity of the solar cell parameters. Furthermore, ${\eta}$ increased to 12.5% with a $J_{sc}$ of $35.6mA/cm^2$, a $V_{oc}$ of 0.53 V, and a FF of 0.67 with an antireflection (AR) coating layer of 20-nm-thick CMD molybdenum oxide $MoO_x$ (n= 2.1) using negatively charged mist of 0.1 wt% 12 Molybdo (VI) phosphoric acid n-Hydrate) $H_3(PMo_{12}O_40){\cdot}nH_2O$ in methanol. CMD. These findings suggest that the CMD with negatively charged mist has a great potential for the uniform deposition of organic and inorganic on textured c-Si substrate by adjusting $T_s$ and $V_s$.

  • PDF

Study on the Small Fields Dosimetry for High Energy Photon-based Radiation Therapy (고에너지 광자선을 이용한 방사선 치료 시 소조사면에서의 흡수선량평가에 관한 연구)

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.290-297
    • /
    • 2009
  • In case of radiation treatment using small field high-energy photon beams, an accurate dosimetry is a challenging task because of dosimetrically unfavorable phenomena such as dramatic changes of the dose at the field boundaries, dis-equilibrium of the electrons, and non-uniformity between the detector and the phantom materials. In this study, the absorbed dose in the phantom was measured by using an ion chamber and a diode detector widely used in clinics. $GAFCHROMIC^{(R)}$ EBT films composed of water equivalent materials was also evaluated as a small field detector and compared with ionchamber and diode detectors. The output factors at 10 cm depth of a solid phantom located 100 cm from the 6 MV linear accelerator (Varian, 6 EX) source were measured for 6 field sizes ($5{\times}5\;cm^2$, $2{\times}2\;cm^2$, $1.5{\times}1.5\;cm^2$, $1{\times}1\;cm^2$, $0.7{\times}0.7\;cm^2$ and $0.5{\times}0.5\;cm^2$). As a result, from $5{\times}5\;cm^2$ to $1.5{\times}1.5\;cm^2$ field sizes, absorbed doses from three detectors were accurately identified within 1%. Wheres, the ion chamber underestimated dose compared to other detectors in the field sizes less than $1{\times}1\;cm^2$. In order to correct the observed underestimation, a convolution method was employed to eliminate the volume averaging effect of an ion chamber. Finally, in $1{\times}1\;cm^2$ field the absorbed dose with a diode detector was about 3% higher than that with the EBT film while the dose with the ion chamber after volume correction was 1% lower. For $0.5{\times}0.5\;cm^2$ field, the dose with the diode detector was 1% larger than that with the EBT film while dose with volume corrected ionization chamber was 7% lower. In conclusion, the possibility of $GAFCHROMIC^{(R)}$ EBT film as an small field dosimeter was tested and further investigation will be proceed using Monte Calro simulation.

  • PDF

Electrical Characterization of Ultrathin $SiO_2$ Films Grown by Thermal Oxidation in $N_2O$ Ambient ($N_2O$ 분위기에서 열산화법으로 성장시킨 $SiO_2$초박막의 전기적 특성)

  • Gang, Seok-Bong;Kim, Seon-U;Byeon, Jeong-Su;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.63-74
    • /
    • 1994
  • The ultrathin oxide films less than 100$\AA$ were grown by thermal oxidation in $N_2O$ ambient to improve the controllability of thickness, thickness uniformity, process reproducibility and their electrical properties. Oxidation rate was reduced significantly at very thin region due to the formation of oxynitride layer in $N_2O$ ambient and moreover nitridation of the oxide layer was simultaneously accompanied during growth. The nitrogen incorporation in the grown oxide layer was characterized with the wet chemical etch-rate and ESCA analysis of the grown oxide layer. All the oxides thin films grown in $N_2O$, pure and dilute $O_2$ ambients show Fowler-Nordheim electrical conduction. The electrical characteristics of thin oxide films grown in $N_2O$ such as leakage current, electrical breakdown, interface trap density generation due to the injected electron and reliability were better than those in pure or dilute ambient. These improved properties can be explained by the fact that the weak Si-0 bond is reduced by stress relaxation during oxidation and replacement by strong Si-N bond, and thus the trap sites are reduced.

  • PDF

Back Surface Field Properties with Different Surface Conditions for Crystalline Silicon Solar Cells (후면 형상에 따른 결정질 실리콘 태양전지의 후면전계 형성 및 특성)

  • Kim, Hyun-Ho;Kim, Seong-Tak;Park, Sung-Eun;Song, Joo-Yong;Kim, Young-Do;Tark, Sung-Ju;Kwon, Soon-Woo;Yoon, Se-Wang;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.243-249
    • /
    • 2011
  • To reduce manufacturing costs of crystalline silicon solar cells, silicon wafers have become thinner. In relation to this, the properties of the aluminium-back surface field (Al-BSF) are considered an important factor in solar cell performance. Generally, screen-printing and a rapid thermal process (RTP) are utilized together to form the Al-BSF. This study evaluates Al-BSF formation on a (111) textured back surface compared with a (100) flat back surface with variation of ramp up rates from 18 to $89^{\circ}C$/s for the RTP annealing conditions. To make different back surface morphologies, one side texturing using a silicon nitride film and double side texturing were carried out. After aluminium screen-printing, Al-BSF formed according to the RTP annealing conditions. A metal etching process in hydrochloric acid solution was carried out to assess the quality of Al-BSF. Saturation currents were calculated by using quasi-steady-state photoconductance. The surface morphologies observed by scanning electron microscopy and a non-contacting optical profiler. Also, sheet resistances and bulk carrier concentration were measured by a 4-point probe and hall measurement system. From the results, a faster ramp up during Al-BSF formation yielded better quality than a slower ramp up process due to temperature uniformity of silicon and the aluminium surface. Also, in the Al-BSF formation process, the (111) textured back surface is significantly affected by the ramp up rates compared with the (100) flat back surface.

Fabrication and Characterization of Bi-axial Textured Conductive Perovskite-type Oxide Deposited on Metal Substrates for Coated Conductor. (이축 배향화된 전도성 복합산화물의 금속 기판의 제조와 분석)

  • Sooyeon Han;Jongin Hong;Youngah Jeon;Huyong Tian;Kim, Yangsoo;Kwangsoo No
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.235-235
    • /
    • 2003
  • The development of a buffer layer is an important issue for the second -generation wire, YBCO coated metal wire. The buffer layer demands not only on the prohibition of the reaction between YBCO and metal substrate, but also the proper lattice match and conductivity for high critical current density (Jc) of YBCO superconductor, In order to satisfy these demands, we suggested CaRuO3 as a useful candidate having that the lattice mismatches with Ni (200) and with YBCO are 8.2% and 8.0%, respectively. The CaRuO3 thin films were deposited on Ni substrates using various methods, such as e-beam evaporation and DC and RF magnetron sputtering. These films were investigated using SEM, XRD, pole-figure and AES. In e-beam evaporation, the deposition temperature of CaRuO3 was the most important since both hi-axial texturing and NiO formation between Ni and CaRuO3 depended on it. Also, the oxygen flow rate had i[n effect on the growth of CaRuO3 on Ni substrates. The optimal conditions of crystal growth and film uniformity were 400$^{\circ}C$, 50 ㎃ and 7 ㎸ when oxygen flow rate was 70∼100sccm In RF magnetron sputtering, CaRuO3 was deposited on Ni substrates with various conditions and annealing temperatures. As a result, the conductivity of CaRuO3 thin films was dependent on CaRuO3 layer thickness and fabrication temperature. We suggested the multi-step deposition, such as two-step deposition with different temperature, to prohibit the NiO formation and to control the hi-axial texture.

  • PDF