• Title/Summary/Keyword: film transfer system

Search Result 205, Processing Time 0.04 seconds

Transient Dynamic Analysis of Scroll Compressor Crankshaft Using Finite Element-Transfer Matrix Method (유한요소-전달행렬법에 의한 스크롤 압축기 크랭크축의 과도 동적 해석)

  • 김태종
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.97-106
    • /
    • 2000
  • The dynamic behavior of crankshaft-bearing system in scroll compressor has been investigated using the combined methodologies of finite elements and transfer matrices. The finite element formulation is proposed including the field element for a shaft section and the point element at balancer weight locations, bearing locations, etc., whereas the conventional method is used with the elements. The Houbolt method is used to consider the time march for the integration of the system equations. The linear stiffness and damping coefficients are calculated for a finite cylindrical fluid-film bearing by solving the Reynolds equation, using finite difference method. The orbital response of crankshaft supported on the linear bearing model is obtained, considering balancer weights of motor rotor. And, the steady state displacement of crankshaft are compared with a variation in balancer weight. The loci of crankshaft at bearing locations are composed of the synchronous whirl component and the non-synchronous whirl component.

  • PDF

Preparation and Characterization of Electrodeposited Cadmium and Lead thin Films from a Diluted Chloride Solution

  • Sulaymon, Abbas Hamid;Mohammed, Sawsan A.M.;Abbar, Ali Hussein
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.115-127
    • /
    • 2014
  • Cd-Pb thin films were electrodeposited from a diluted chloride solution using stainless steel rotating disc electrode. The linear sweep voltammograms of the single metallic ions show that electrodeposition of these ions was mass transfer control due to the plateau observed for different rotations at concentration (50 and 200 ppm). The voltammograms of binary system elucidate that electrodeposition process always start at cathodic potential located between the potential of individual metals. Currents transients measurements, anodic linear sweep voltammetry (ALSV) and atomic force microscopy (AFM) were used to characterize the electrocryatalization process and morphology of thin films. ALSV profiles show a differentiation for the dissolution process of individual metals and binary system. Two peaks of dissolution Cd-Pb film were observed for the binary system with different metal ion concentration ratios. The model of Scharifker and Hills was used to analyze the current transients and it revealed that Cd-Pb electrocrystalization processes at low concentration is governed by three-dimensional progressive nucleation controlled by diffusion, while at higher concentration starts as a progressive nucleation then switch to instantaneous nucleation process. AFM images reveal that Cd-Pb film electrodeposited at low concentration is more roughness than Cd-Pb film electrodeposited at high concentrated solution.

Dosimetric Evaluation of an Automatically Converted Radiation Therapy Plan between Radixact Machines

  • Lee, Mi Young;Kang, Dae Gyu;Kim, Jin Sung
    • Progress in Medical Physics
    • /
    • v.31 no.4
    • /
    • pp.153-162
    • /
    • 2020
  • Purpose: We aim to evaluate the accuracy and effectiveness of an automatically converted radiation therapy plan between Radixact machines by comparing the original plan with the transferred plan. Methods: The study involved a total of 20 patients for each randomly selected treatment site who received radiation treatment with Radixact. We set up the cheese phantom (Gammex RMI, Middleton, WI, USA) with an Exradin A1SL ion chamber (Standard Imaging, Madison, WI, USA) and GAFCHROMIC EBT3 film (International Specialty Products, Wayne, NJ, USA) inserted. We used three methods to evaluate an automatically converted radiation therapy plan using the features of the Plan transfer. First, we evaluated and compared Planning target volume (PTV) coverage (homogeneity index, HI; conformity index, CI) and organs at risk (OAR) dose statistics. Second, we compared the absolute dose using an ion chamber. Lastly, we analyzed gamma passing rates using film. Results: Our results showed that the difference in PTV coverage was 1.72% in HI and 0.17% in CI, and majority of the difference in OAR was within 1% across all sites. The difference (%) in absolute dose values was averaging 0.74%. In addition, the gamma passing rate was 99.64% for 3%/3 mm and 97.08% for 2%/2 mm. Conclusions: The Plan transfer function can be reliably used in appropriate situations.

Analysis of Flow and Heat Transfer in Swirl Chamber for Cooling in Hot Section (고온부 냉각을 위한 스월챔버내의 유동 및 열전달 해석)

  • Lee Kang-Yeop;Kim Hyung-Mo;Han Yeoung-Min;Lee Soo-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.71-78
    • /
    • 2002
  • All modem, aerospace gas turbines must operate with hot stage gas temperature several hundreds of degrees hotter than the melting temperatures of the materials used in their construction. Complicated cooling schemes need to be employed in the combustor walls and In the high pressure turbine stages. Internal passages are cast or machined into the hot sections of aero-gas turbine engines and air from the compressor is used for cooling. In many cases, the cooling system is engineered to utilize jets of high velocity air, which impinge on the internal surfaces of the components. They are divided by Impinging cooling method and Vortex cooling method. Specially, Research of new cooling system(Vortex cooling method) that overcome inefficiency of film cooling and limitation of space. The focus of new cooling system that improve greatly cooling efficiency using quantity's cooling air which is less is set in surface heat transfer elevation. Therefore, In this study, the numerical analysis have been performed for characteristic of flow and thermal in the swirl chamber and compared with the flow field measurement by LDV. especially, for understanding of high heat transfer efficiency in vicinity of wall. we considered flow structure and mechanism of vortex and heat transfer characteristic in variation of Reynolds number.

  • PDF

TURBO TYPE AIR COMPRESSOR DESIGN FOR LOW VIBRATION LEVEL (저진동을 위한 터보형 공기압축기의 설계)

  • Kim, Myeong-Kuk;Jung, Yong-Soo;Park, No-gill
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.159-165
    • /
    • 1998
  • Bearing design of turbo type geared centrifugal air compressor for low vibration level has been studied. The Transfer Matrix Method was used in this paper to analyze the air-compressor consisting of impellers, multi-stage geared rotors, and oil-film hearings. We have to consider this air-compressor as multi-geared rotating system, because characteristics of rotor-bearing system are different from conventional characteristics of non-rotating system. From the view point of Rotordynamics, the stiffness and damping coefficient of oil-film bearing in case of compressor system are more sensitive than other design parameters such as shaft length, shaft diameter and the weight of impellers, etc. Therefore, the stiffness and damping coefficients on each bearing were considered as design parameters. As the result of this study, turbo type air compressor with low vibration level can be achieved.

  • PDF

A study on The Application of a Vertical Absorption System Cooled by Air (공냉형 수직 흡수식 시스템의 적용에 관한 연구)

  • 김정국;조금남
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2003.05a
    • /
    • pp.351-357
    • /
    • 2003
  • In absorption system, the performance of the absorber is critical the overall system performance, size, and first-cost. The objective of this paper is to provide a comprehensive review of the significant effects that researchers have made to numerically analysis model the coupled heat and mass transfer process that occur during falling-film absorption and experimental researches. This study includes experimental work in the enhancement of absorption performance, the effect of the geometry of a vertical absorber, and the effect of configuration of absorption system. This paper is used to highlight key areas which need attention such as film ans vapor hydrodynamics, especially the non-periodicity, instability, and recirculatory motion of waves in the vertical absorber case.

  • PDF

Numerical Study on Simultaneous Heat and Mass Transfer in a Falling Film of Water-Cooled Vertical Plate Absorber

  • Phan, Thanh-Tong;Song, Sung-Ho;Moon, Choon-Geun;Kim, Jae-Dol;Kim, Eun-Pil;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.41-47
    • /
    • 2002
  • A model of simultaneous heat and mass transfer process in absorption of refrigerant vapor into a lithium bromide solution of water-cooled vertical plate absorber was developed. The model can predict temperature and concentration profiles as well as the absorption heat and mass fluxes, the total heat and mass transfer rates and the heat and mass transfer coefficients. Besides, the effect of operating condition on absorption mass flux has been investigated, with the result that the absorption mass flux is increased as the inlet cooling water temperature decreases, the system pressure increases and the inlet solution concentration increases. And among the effects of operating parameters on absorption mass flux, the effect of inlet solution concentration is dominant.

  • PDF

An Experimental Study on the Performance of a Cross-Flow-Type, Indirect Evaporative Cooler Made of Paper/Plastic Film (종이와 플라스틱 필름의 이종 재질로 구성된 직교류형 간접증발소자의 성능에 대한 실험적 연구)

  • Kwon, Mi-Hye;Go, Min-Geon;Kim, Nae-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.475-483
    • /
    • 2015
  • In Korea, a typically hot and humid summer means that air-conditioners consume a large quantity of electricity; accordingly, the simultaneous usage of an indirect evaporative cooler may reduce the sensible-heat level and save the amount of electricity that is consumed. In this study, the heat-transfer and pressure-drop characteristics of an indirect evaporative cooler made of paper/plastic film were investigated under both dry and wet conditions; for the purpose of comparison, an indirect evaporative cooler made of plastic film was also tested. Our results show that the indirect evaporative efficiencies under a wet condition are greater than those under a dry condition, and the efficiencies of the paper/plastic sample (109% to 138%) are greater than those (67% to 89%) of the plastic sample; in addition, the wet-surface, indirect evaporative efficiencies of the paper/plastic sample are 32% to 36% greater than those of the plastic sample. Further, the wet-surface pressure drops of the paper/plastic sample are 13% to 23% larger than those of the plastic sample, and this might have been caused by the surface roughness of the samples. A rigorous heat-transfer analysis revealed that, for the plastic sample, 30% to 37% of the wet channels remained dry, whereas all of the channels were wet for the paper/plastic sample.

Active control of the Self-excited Vibration of a Rotor System Supported by Tilting-Pad Gas Bearing (틸딩 패드 기체 베어링으로 지지된 로터 계 자려 진동의 능동제어)

  • Kwon, Tae-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.119-125
    • /
    • 2001
  • This paper presents an experimental study on active control of self-excited vibration for a high speed turbomachinery. In order to suppress the self-excited vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by pivots containing piezoelectric actuators and their radial position can be actively controlled by applying voltage to the actuators. The transfer characteristics from actuator inputs to shaft vibration outputs are experimentally investigated. In a tilting-pad gas bearing (TPGB), a shaft is supported by the pressurized air film. Four gap sensors were used to measure the vibration of the shaft and PID was used in the feedback control of the shaft vibration. The experimental results show that the self-excited vibration of the rotor can be effectively suppressed if the PID controller gains are properly chosen. As a result we find that the feedback control is effective for suppressing the self-excited vibration of a rotor system using stack-type PZT actuators.

  • PDF

The Effects of Staggered Rows of Rectangular Shaped Holes on Film Cooling (엇갈린 배열의 사각홀이 막냉각에 미치는 영향)

  • Kim, Young-Bong;Rhee, Dong-Ho;Lee, Youn-Seok;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.304-314
    • /
    • 2004
  • An experimental study has been conducted to measure the temperature fields and the local film cooling effectiveness for two and three staggered rows of the rectangular shaped-holes with various blowing rates. The hydraulic diameter of rectangular-shaped hole is 10mm. To compare with the film cooling performance of rectangular-shaped hole, two kinds of circular holes are tested. One has the same hydraulic diameter as the rectangular hole and the other has the same cross sectional area. Also, rectangular holes with expanded exit with same inlet area as rectangular ones are tested. Temperature fields are measured using a thermocouple rake attached on three-axis traversing system. Adiabatic film cooling effectiveness on the surface are obtained based on experimental results of thermochromic liquid crystals. The film cooling effectiveness is measured for various blowing rates and compared with the results for the cylindrical holes. In case of 2 rows, the rectangular holes has better performance than circular holes due to its slot-like geometry. In case of 3 rows, the effecta of hole shape is not clear.