• Title/Summary/Keyword: film coefficient

Search Result 1,072, Processing Time 0.028 seconds

Bi-sticking Coefficient of Bi-superconducting Thin Film Prepared by IBS Method

  • Lee, Hee-Kab;Lee, Joon-Ung;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.213-216
    • /
    • 1999
  • BSCCO thin films are fabricated via a co-deposition process by an ion beam sputtering with an ultra-low growth rate, and sticking coefficients of the respective elements are evaluated. The sticking coefficient of Bi element exhibits a characteristics temperature dependence : almost a constant value of 0.49 below 730$^{\circ}C$ and decreases linearly with temperature over 730$^{\circ}C$. This temperature dependence can be elucidated from the evaporation and sublimation rates of bismuth oxide, Bi$_2$O$_3$ from the film surface. It is considered that the liquid phase of the bismuth oxide plays an important role in the Bi(2212) phase formation in the co-deposition process.

  • PDF

A Study on Friction Coefficient for Sheet Metal Forming (판재 성형을 위한 마찰 계수에 관한 연구)

  • Park D. H.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.28-31
    • /
    • 2001
  • Friction for sheet metal forming affects improvement of deep drawing formability. The deep drawing is affected by many process variables, such as lubricant, blank shapes, shape radius and so on. Especially, lubrication is very important formability factor. In this study, in order to investigate fraction coefficient of sheet metal forming, we examined friction test about three conditions, such as non-lubrication, full lubrication and film lubrication. We measured friction coefficient according to pin load under the conditions like deep drawing die. Mean friction coefficient for film lubrication condition would be very useful value to improve drawability.

  • PDF

Tribology of Si incorporated Diamond-like Carbon Films

  • Kim, Myoung-Geun;Lee, Kwang-Rveol;Eun, Kwang-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.44-44
    • /
    • 1998
  • It was observed that the friction coefficient decreased with increasing Si concentration in the l ilms. Furthermore, the friction behavior became more s때ble even when very small amount of S Si of less than 0.5 at. % was incorporatA:회 By analyzing the composition of the debris f formed, we could show that the low and stabilized friction coefficient is in마nately relatA:었 w with the formation of the Si rich oxide debris. These result supports the mechanism that the h hydrated silica debris is the reason for low friction coefficient in humid environment. Second e evidence of the role of Si rich oxide debris could be found in the triOO-chemical reactions d during initial stage of triho-test. When the Si concen$\sigma$ation was less than 5 at.%, initial t transient period of high friction coefficient was commonly observed. Mter the transient period, m the friction coefficient becomes lower with increasing contact cycles. The initial $\sigma$ansient p peri여 becomes shorter and the starting and maximum friction coefficients in $\sigma$ansient 야,riod d decreased with increasing Si concentration. Composition of the debris on the wear scar s surface was analyzed by Auger spe따'Oscopy at v뼈ous stages in the initial transient period. W We observed that when the friction coefficient increased in earlier stage of the $\sigma$'ansient p period, iron and oxygen was observed in the debris. However, decrease in the 당iction c coefficient in the later stage of the transient period was associated with the formation of s silicon rich oxide debris. This result also supports the friction mechanism of Si-DLC films t that the formation of Si rich oxide debris results in low friction coefficient in ambient a atmosphere. atmosphere.

  • PDF

Role of Am Piezoelectric Crystal Orientation in Solidly Mounted Film Bulk Acoustic Wave Resonators

  • Lee, Si-Hyung;Kang, Sang-Chul;Han, Sang-Chul;Ju, Byung-Kwon;Yoon, Ki-Hyun;Lee, Jeon-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.393-397
    • /
    • 2003
  • To investigate the effect of AIN c-axis orientation on the resonance performance of film bulk acoustic wave resonators, solidly mounted resonators with crybtallographically different AIN piezoelectric films were prepared by changing only the bottom electrode surface conditions. As increasing the degree of c-axis texturing, the effective electromechanical coupling coefficient ($\kappa$$\_$eff/)$^2$ in resonators increased gradually. The least 4 degree of full width at half maximum in an AIN(002) rocking curve, which corresponds to $\kappa$$^2$$\_$eff/ of above 5%, was measured to be necessary for band pass filter applications in wireless communication system. The longitudinal acoustic wave velocity of AIN films varied with the degree of c-axis texturing. The velocity of highly c-axis textured AIN film was extracted to be about 10200 n/s by mathematical analysis using Matlab.

Characteristics of Absorption and Heat Transfer for Film Falling along a Vertical Inner Tube (2nd. Report, Characteristics of Heat Transfer) (수직관내(垂直管內)를 흘러내리는 액막식(液膜式) 흡수기(吸收器)의 흡수(吸收) 및 열전달특성(熱傳達特性)(제(第)2보(報) 열전달특성(熱傳達特性)))

  • Ohm, K.C.;Rie, D.H.;Choi, G.G.;Kasiwagi, Takao;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.4
    • /
    • pp.257-264
    • /
    • 1993
  • This is the second report of a three part study on the absorption and heat transfer characteristics of absorber, the correlation of refrigerating capacity and heating capacity. The 2nd report deals with the heat transfer characteristics of a vertical falling film type absorber of inner copper tube. The solute is LiBr-Water solution(60wt%) and the solvent is water vapor. The film Reynoles numbers are varied in the range of 35~130. The states of LiBr solution at the top of absorber are supercooled liquid and superheated liquid. The results are summarized as follows ; Heat transfer results reveal that for the absorption of falling film, the state of LiBr solution appears to be influential in determining the heat transfer. Thus, for the state of supercooled liquid, heat transfer coefficient decreases with increasing the film Reynolds number, but in the condition of superheated liquid, it increases conversely. The mass transfer coefficients that were presented in the 1st.report and heat transfer coefficients of this paper are presented as the dimensionless correlation. The optimum water flowrate which brings about maximum value of heat flux in the film exists, and that increases with increasing the cooling water temperature.

  • PDF

Influence of Annealing Temperature on Structural and Thermoelectrical Properties of Bismuth-Telluride-Selenide Ternary Compound Thin Film

  • Kim, Youngmoon;Choi, Hyejin;Kim, Taehyeon;Cho, Mann-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.304.2-304.2
    • /
    • 2014
  • Chalcogenides (Te,Se) and pnictogens(Bi,Sb) materials have been widely investigated as thermoelectric materials. Especially, Bi2Te3 (Bismuth telluride) compound thermoelectric materials in thin film and nanowires are known to have the highest thermoelectric figure of merit ZT at room temperature. Currently, the thermoelectric material research is mostly driven in two directions: (1) enhancing the Seebeck coefficient, electrical conductivity using quantum confinement effects and (2) decreasing thermal conductivity using phonon scattering effect. Herein we demonstrated influence of annealing temperature on structural and thermoelectrical properties of Bismuth-telluride-selenide ternary compound thin film. Te-rich Bismuth-telluride-selenide ternary compound thin film prepared co-deposited by thermal evaporation techniques. After annealing treatment, co-deposited thin film was transformed amorphous phase to Bi2Te3-Bi2Te2Se1 polycrystalline thin film. In the experiment, to investigate the structural and thermoelectric characteristics of Bi2Te3-i2Te2Se1 films, we measured Rutherford Backscattering spectrometry (RBS), X-ray diffraction (XRD), Raman spectroscopy, Scanning eletron microscopy (SEM), Transmission electron microscopy (TEM), Seebeck coefficient measurement and Hall measurement. After annealing treatment, electrical conductivity and Seebeck coefficient was increased by defect states dominated by selenium vacant sites. These charged selenium vacancies behave as electron donors, resulting in carrier concentration was increased. Moreover, Thermal conductivity was significantly decreased because phonon scattering was enhanced through the grain boundary in Bi2Te3-Bi2Te2Se1 polycrystalline compound. As a result, The enhancement of thermoelectric figure-of-merit could be obtained by optimal annealing treatment.

  • PDF

Effects of Tube Diameter and Surface Sub-Cooling Temperature on R1234ze(E) and R1233zd(E) Film Condensation Heat Transfer Characteristics in Smooth Horizontal Laboratory Tubes (수평 평활관에서 관직경 및 표면 과냉도가 R1234ze(E) 및 R1233zd(E) 막응축 열전달에 미치는 영향)

  • Jeon, Dong-Soon;Ko, Ji-Woon;Kim, Seon-Chang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.231-238
    • /
    • 2017
  • HFO refrigerants have recently come to be regarded as promising alternatives to R134a for use in turbo chillers. This study provides results from experiments evaluating the film condensation heat transfer characteristics of HFO refrigerants R1234ze(E) and R1233zd(E) on smooth horizontal laboratory tubes. The experiments were conducted at a saturation vapor temperature of $38.0^{\circ}C$ with surface sub-cooling temperatures in the range of $3{\sim}15^{\circ}C$. We observe that the film condensation heat transfer coefficient decreases as surface sub-cooling temperatures increase. In the case of laboratory tubes with a diameter of 19.05 mm, the film condensation heat transfer coefficients of R1234ze(E) and R1233zd(E) were approximately 11% and 20% lower than those of R134a, respectively. Furthermore, our investigation of the effect of tube diameter on film condensation heat transfer coefficients, demonstrates an inverse relationship where the film condensation heat transfer coefficient increases as laboratory tube diameter decreases. We propose experimental correlations of Nusselt number for R1234ze(E) and R1233zd(E), which yield a ${\pm}20%$ error band.

A Study on the Heat Transfer Characteristics Around a Surface-Mounted Air-Cooled Module for the Flow Angle-of-Attack (흐름 영각에 따른 강제공랭 모듈 주위의 열전달 특성에 관한 연구)

  • Park, Sang-Hui;Sin, Dae-Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1267-1275
    • /
    • 2002
  • An experimental study was performed to investigate adiabatic wall temperature and heat transfer coefficient around a module cooled by forced air flow. The flow angle of attack to the module were 0$^{\circ}$and 45$^{\circ}$. In the first method, inlet air flow(1~7m/s) and input power.(3, 5, 7W) were varied after a heated module was placed on an adiabatic floor(320$\times$550$\times$1㎣). An adiabatic wall temperature was determinated to use liquid crystal film. In the second method to determinate heat transfer coefficient, inlet air flow(1~7m/s) and the heat flux of rubber heater(0.031~0.062W/$m^2$) were varied after an adiabatic module was placed on rubber heater covering up an adiabatic floor. Additional information is visualized by an oil-film method of the surface flow on the floor and the module. Plots of $T_{ad}$ and $h_{ad}$ show marked effects of flow development from the module and dispersion of thermal wake near the module. Certain key features of the data set obtained by this investigation may serve as a benchmark for thermal-design codes based on CFD.

A Study on the MDTF for Uncooled Infrared Ray Thermal Image Sensors with High Thermal Coefficient of Resistance (높은 열저항 계수를 가지는 비냉각형 적외선 열영상 이미지 센서용 MDTF(Metal-dielectric Thin Film)에 관한 연구)

  • Jung, Eun-Sik;Jeong, Se-Jin;Kang, Ey-Goo;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.5
    • /
    • pp.366-371
    • /
    • 2012
  • In this paper, fabricated by MEMS uncooled micro-bolometer detector for the study in the infrared sensitivity enhancement. Absorption layer SiOx-Metal series MDTF (metal-dielectric thin film) by high absorption rate and has a high thermal coefficient of resistance, low noise characteristics were implemented. Then MDTF were made in a vacuum deposition method. And MDTF for the analysis of the physical properties of silicon wafers were fabricated, TCR (temperature coefficient of resistance) value was made in order to measure the glass wafer and FT-IR (Fourier Transform Infrared spectroscopy) values were made in order to measure the germanium window. The analyzed results of MDTF -3 [%/K] has more characteristics of the TCR. And 8~12 um wavelength region close to 70% in the absorption characteristic.

Preparation of Zr0.7Sn0.3TiO4 Thin Films by Metal Organic Decomposition and Their Dielectric Properties (금속유기분해법을 사용한 Zr0.7Sn0.3TiO4 박막 제조 및 유전특성)

  • Sun, Ho-Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.311-316
    • /
    • 2010
  • $Zr_{0.7}Sn_{0.3}TiO_4$ (ZST) thin films were fabricated by metal-organic decomposition, and their dielectric properties were investigated in order to evaluate their potential use in passive capacitors for rf and analog/mixed signal integrated circuits. The ZST thin film annealed at the temperature of $800^{\circ}C$ showed a dielectric constant of 27.3 and a dielectric loss of 0.011. The capacitor using the ZST film had quadratic and linear voltage coefficient of capacitance (VCC) of -65 ppm/$V^2$ and -35 ppm/V at 100 kHz, respectively. It also exhibited a good temperature coefficient of capacitance (TCC) value of -32 ppm/$^{\circ}C$ at 100 kHz.