• Title/Summary/Keyword: fillet

Search Result 550, Processing Time 0.025 seconds

A Study on the Optimum Machining Conditions and Energy Efficiency of a Laser-Assisted Fillet Milling

  • Woo, Wan-Sik;Lee, Choon-Man
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.593-604
    • /
    • 2018
  • Laser-assisted machining (LAM) is known to be an effective and economical technique for improving the machinability of difficult-to-machine materials. In the LAM method, material is preheated using a laser heat source and then the preheated area is removed by following cutting tool. For laser-assisted turning (LAT), the configuration of the system is not complicated because laser irradiates from a fixed position. In contrast, laser-assisted milling (LAMill) system is not only complicated but also difficult to control because laser heat source must always move ahead of the cutting tool along a three dimensional (3D) tool path. LAMill is still early stage and cannot yet be used to machine finished products with 3D shapes. In this study, a laser-assisted fillet milling process was developed for machining 3D shapes. There are no prior studies combining fillet milling and LAMill. Laser-assisted fillet milling strategy was proposed, and effective depth of cut (EDOC) was obtained using thermal analysis. Experiments were designed using response surface method and cutting force prediction equations were developed using statistical analysis and regression analysis. The optimum machining conditions were also proposed, and energy efficiency of the LAMill was analyzed by comparing the specific cutting energy of conventional machining (CM) and LAMill.

Distortion Control of the Curved Panel Using Elastic Bending Method

  • Kim H. G.;Shin S. B.;Youn J. G.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.29-34
    • /
    • 2005
  • Finite element analysis (FEA) and experimental studies on an elastic bending method have been performed in order to control the angular distortion at the fillet weldment for curved panel. Process parameters for the elastic bending method such as clamping span and release time were analyzed with reference to welding condition and geometric effect of the curved panel, which can minimize or prevent the angular distortion by producing a proper skin stress to the fillet weldment. The amounts of the angular distortion decrease almost in a linear manner with an increase in the skin stress. The skin stress required for non-angular distortion at the fillet weldment is strongly dependent on the plate thickness, not the heat intensity applied. The clamping span for obtaining uniform skin stress was defined as functions of the plate thickness and length of the free edge. Clamp should be removed after the fillet weldment is cooled down to room temperature for non-angular distortion. Effectiveness of the elastic bending method established was verified by its application to an actual curved panel.

  • PDF

Robust Design of Crankshaft (크랭크샤프트 강건 설계)

  • Lee, Seungwoo;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.279-284
    • /
    • 2016
  • Finite element analysis along with DOE scheme has been performed to obtain robust design of crankshaft assembly. This study focused on obtaining optimized fillet radius of crankshaft mainly by statistical approach. 27 design cases using 3 factors with 3 levels are constructed by design of experiment. Changes of design factors and noise factor may influence the durability of crankshaft system. General two stages of robust design may enhance the durability of crankshaft model. Increasing crank arm thickness was adopted as a shrink step and change of fillet radius was used as a shift step. By combining these two steps, the stress concentration at the fillet area is reduced and adequate fillet radius is determined for the robust design of crankshaft.

Aerodynamics and rain rivulet suppression of bridge cables with concave fillets

  • Burlina, Celeste;Georgakis, Christos T.;Larsen, Soren V.;Egger, Philipp
    • Wind and Structures
    • /
    • v.26 no.4
    • /
    • pp.253-266
    • /
    • 2018
  • In this paper, the aerodynamic performance of two new cable surfaces with concave fillets (strakes) is examined and compared to plain, dimpled and helically filleted surfaces. To this end, an extensive wind-tunnel campaign was undertaken. Different samples with different concave fillet heights for both new surfaces were tested and compared to traditional surfaces in terms of aerodynamic forces (i.e. drag and lift reduction) and rain-rivulet suppression. Furthermore, flow visualization tests were performed to investigate the flow separation mechanism induced by the presence of the concave fillet and its relation to the aerodynamic forces. Both new cable surfaces outperformed the traditional surfaces in terms of rain-rivulet suppression thanks to the ability of the concave shape of the fillet to act as a ramp for the incoming rain-rivulet. Furthermore, both new surfaces with the lowest tested fillet height were found to have drag coefficients in the supercritical Reynolds range that compare favorably to existing cable surfaces, with an early suppression of vortex shedding.

Fatigue Strength of Fillet Weldment under Out-of-plane Bending Load (필릿 용접부의 면외굽힘하중에 대한 피로강도)

  • 강성원;한상혁;김화수;백영민
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.28-35
    • /
    • 2003
  • Fatigue tests of transverse fillet weldment were performed under out-of-plane bending loads. Significant increase of the fatigue strength was observed under out-of-plane bending loads, compared to the one under in-plane loads (axial loads). Applicability of the crack propagation analysis using LEFM for the surface crack of fillet weldment were investigated as well, in parallel with the fatigue tests. For the rational assessment of the fatigue strength of welded ship structures where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to complexity of applied load and structural geometry, further investigation is recommended for the effect of the out-of-plane bending stress on the fatigue strength of weldment.

FATIGUE STRENGTH OF FILLET WELDED STEEL STRUCTURE UNDER OUT-OF-PLANE BENDING LOAD

  • Kang, Sung-Won;Kim, Wha-Soo;Paik, Young-Min
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.113-120
    • /
    • 2002
  • The effect of out-of-plane loads on the fatigue strength of welded steel structures is examined through fatigue tests with weldment of two fillet weld joint types. The results of the fatigue tests are compared with those under axial loads, on the basis of the hot spot stress range at the weld toe. From the result of the comparison, a method on how to incorporate the effect of the out-of-plane bending stress is proposed using design S-N curves derived from fatigue tests under the axial load. The proposed method is useful for rational assessment of the fatigue strength of fillet-welded structures, where combined stresses of the in-plane axial stress and the out-of-plane bending stress are induced simultaneously due to the complexity of applied loads and structural geometry.

  • PDF

Measurement of Static Tooth Fillet Strain and Transmission Error of a Cylindrical Worm Gear (원통형 웜기어의 정적 이뿌리 변형률 및 전달오차 측정)

  • Lee, Dong-Hwan;Cheon, Gill-Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1238-1244
    • /
    • 1999
  • Using a cylindrical worm gear under the actual condition of static loading, tooth fillet strains and transmission errors have been measured. The maximum strain occurs on the filet region of the center of the 1st mating tooth. Tooth fillet strain changes most sensitively according to the variations of the center distance and recess side eccentricity than the access side eccentricity. Even the no-backlash worm gear shows the transmission errors.

A Study on the Root Fillet Stress Analysis of Helical Gear due to Helix Angle and Face Width (헬리컬기어에서 나선각과 치폭의 변화에 따른 이뿌리응력에 관한 연구)

  • Han, An-Su;Hong, Min-Sung;Cho, Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.45-50
    • /
    • 2007
  • In this paper, the FEM(Finite Element Method) has been applied to understand the geometrical characteristics and to analyze the stress of a helical gear. The helical gear is simulated and analyzed by adding many thin spur gear with helix angles and twist angles. Helical gears with different helix angle and face width have been studied. The results show that the root fillet stress is increased proportionally to helix angle and face width. Namely, as the face width increases, root fillet stress decreases, and as helix angle gets bigger, root fillet stress increases.

A Study on Horizontal Fillet Welding by Using Rotating Arc (I) - Relation Between Welding Parameters and Weld Bead Shape (회전아크를 이용한 수평필릿 용접에 관한 연구 (I) - 공정변수와 용접비드형상의 관계 -)

  • 김철희;나석주
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.40-45
    • /
    • 2003
  • The high-speed rotating arc process forms a flat bead surface with decreased penetration depth because the molten droplets are deflected by centrifugal force. Therefore the rotating arc welding for horizontal fillet welding increases the leg length with the increase of rotation frequency and prevents the deflection of weld bead and overlap. In this study, the relationship between the welding parameters and the weld bead shape - leg length and undercut - are investigated experimentally. Consequently, the weld quality could be improved by rotating arc welding, and sound weld bead was achieved when applied to horizontal fillet welding with 4mm gap by avoiding the undercut which is inevitable for the conventional GMA welding methods.

Finite Element Analysis for Prediction of Bead Shape of Nd:YAG Laser Fillet Welding (Nd:YAG 레이저 필렛 용접의 비드형상 예측에 관한 유한요소해석)

  • Kim, Kwan-Woo;Lee, Jae-Roon;Suh, Jeong;Cho, Hae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.839-846
    • /
    • 2007
  • Nd:YAG pulse laser fillet welding of stainless steel plate was simulated to find welding condition by using commercial finite element code MARC. Full model of AISI 304 stainless steel plate was considered and user subroutines were applied to boundary condition for the heat transfer. Material properties such as conductivity, specific heat, mass density and latent heat were given as a function of temperature. As results, Three dimensional heat source model for pulse laser beam conditions of fillet welding has been designed by the comparison between the finite element analysis results and experimental data on AISI 304 stainless steel plate. Nd:YAG laser welding for AISI 304 stainless steel was successfully simulated and it should be useful to determine optimal welding condition.