• 제목/요약/키워드: filler modification

검색결과 41건 처리시간 0.023초

Electron Beam Modification of Dual Phase Filler: Surface Characteristics and its Influence on the Properties of Styrene-Butadiene Rubber Vulcanizates

  • Shanmugharaj A. M.
    • 고무기술
    • /
    • 제5권2호
    • /
    • pp.94-103
    • /
    • 2004
  • The present work describes modification of dual phase filler by electron beam irradiation in presence of multifunctional acrylates like trimethylol propane triacrylate (TMPTA) or silane coupling agent like bis (3-triethoxysilylpropyltetrasulphide) and in-fluence of the modified fillers on the physical properties of styrene-butadiene rubber (SBR) vulcanizates. Modulus at 300 % elongation increases whereas the tensile strength decreases with increase in radiation dose for the dual phase filler loaded styrene-butadiene rubber vulcanizates (SBR). However, modulus and tensile strength significantly increase, which is more, pronounced at higher filler loadings for TMPTA modified dual phase filler loaded SBR. These changes in properties are explained by the equilibrium swelling data and Kraus plot interpreting the polymer-filler interaction. Electron beam modification of the filler results in a reduction of tan ${\delta}$ at $70^{\circ}C$, a parameter for rolling resistance and increase in tan ${\delta}$ at $0^{\circ}C$, a parameter for wet skid resistance of the SBR vulcanizates. Finally, the influence of modified fillers on the properties like abrasion resistance, tear strength and fatigue failure and the improvement in the properties have been explained in terms of polymer-filler interaction.

  • PDF

교반 속도가 음이온성 PAM과 양이온성 전분으로 도포된 경질탄산칼슘의 응집과 종이 물성에 미치는 영향 (Effect of Mixing Shear on Flocculation of Anionic PAM and Cationic Starch Adsorbed PCC and Its Effect on Paper Properties)

  • 최도침;원종명;조병욱
    • 펄프종이기술
    • /
    • 제47권2호
    • /
    • pp.53-60
    • /
    • 2015
  • The effects of stirring speed during filler modification by dual polymers on flocculation and reflocculation of PCC (precipitated calcium carbonate) particles and its effect on handsheet properties were elucidated. PCC surface was modified by adsorbing A-PAM (anionic polyacrylamide) and C-starch (cationic starch) in series at various stirring speeds. It was found that increasing stirring speed during filler modification decreased the initial floc size of PCC. Continuous stirring with the same speed for filler modification resulted in the decrease of a floc size, eventually reached a steady state. The variations in a floc size was influenced by the stirring speed during filler modification: the lower the stirring speed during filler modification, the larger the floc size variations. Conclusively, the stability of PCC floc could be improved by increasing the stirring speed. In addition, the stirring speed influenced the handsheet properties. The smaller the PCC floc, the lower the strength of handseet. However, too much larger floc size also deteriorated paper strength. There exists an optimum floc size in term of paper strength which shall be controlled by stirring speed during filler modification.

Advancements in Polymer-Filler Derived Ceramics

  • Greil, Peter
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.279-286
    • /
    • 2012
  • Microstructure tailoring of filler loaded preceramic polymer systems offers a high potential for property improvement of Si-based ceramics and composites. Advancements in manufacturing of bulk materials by controlling microstructure evolution during thermal induced polymer-ceramic transforma-tion and polymer-filler reactions will be presented. Rate controlled pyrolysis, multilayer gradient laminate design and surface modification by gas solid reaction are demonstrated to yield ceramic components of high fractional density and superior mechanical properties. Emerging fields of applications are presented.

초 고비중 탄성체 개발을 위한 매트릭스 탄성체 표면개질 및 충전제 제어기술 기초연구 (Surface Modification of Matrix and filler for Ultra High Density Elastomeric Material)

  • 정경호;이동민;양경모;이완술;홍청석
    • Elastomers and Composites
    • /
    • 제40권2호
    • /
    • pp.93-103
    • /
    • 2005
  • 본 연구에서는 자동차에서 댐핑 재료로 많이 사용되고 있는 스틸 다이내믹 댐퍼를 대체할 수 있는 소재로서 유기탄성체를 사용하였다. 그러나 유기탄성체를 사용하여 스틸 다이내믹 댐퍼를 대체하기 위해서는 스틸 다이내믹 댐퍼에 상응하는 비중의 구현이 가장 중요하고도 해결하기 어려운 과제이다. 본 연구에서는 고비중 구현을 위한 첫 단계로 최적의 매트릭스 탄성체 및 충전제를 선정하여 충전제의 충전량(vol%)에 따른 고무 혼합물의 경화 특성, 인장 강도, 혼련과정중의 고무 혼합물의 온도 변화 및 반발 탄성 등의 특성을 조사하였다. 충전량이 증가할수록 고무 혼합물의 $t_{s2}$는 감소하였고 $t_{90}$는 전반적으로 증가하였다. 또한 인장 강도는 감소하였고 고무 혼합물의 온도는 충전제 입자간의 마찰열로 인하여 증가하였다. 반발탄성은 충전제가 증가할수록 감소하였다. 따라서 초 고비중을 얻기 위해서는 고충전 기술이 선결되어야 하는데 고충전을 할 경우 매트릭스인 유기탄성체의 부피가 상대적으로 감소하기 때문에 기존의 유기탄성체 경화 시스템으로는 경화가 불가능하여 고충전에 부합하는 경화 시스템을 구축 하고자 매트릭스의 광화학적 개질을 시도하였고, 개질여부는 FTIR-ATR로 분석을 통해 확인하였다. 충전제의 충전밀도를 높여 매트릭스 탄성체에 충전제의 안정한 분산 및 고충전 기술을 확립하고자 충전제의 개질을 통해 충전제의 입도, 입도 분포도 및 형태를 제어하였다. 입도분석기로 입도 및 입도 분포의 변화를 확인하였고 SEM을 이용하여 충전제의 형태 변화를 확인하였다.

음이온성 PAM과 양이온성 전분으로 도포된 경질탄산칼슘에 의한 종이 강도 향상 (Paper Strength Improvement by Anionic PAM and Cationic Starch Adsorbed PCC)

  • 최도침;최은연;원종명;조병욱
    • 펄프종이기술
    • /
    • 제45권1호
    • /
    • pp.59-66
    • /
    • 2013
  • Fillers have been used for printing paper to improve printability, sheet formation and optical properties and to reduce production costs by replacing expensive wood pulps. However, an increased filler content will decrease paper strength because filler particles interfere with fiber-fiber bonding. In order to increase filler content without sacrificing too much paper strength in high filler content papers, the surface of precipitated calcium carbonate (PCC) has been modified by adsorbing anionic polyacrylamide and cationic starch in series. The adsorbed polymer layers would enhance interactions between the filler surface and the fiber surface, improving internal bonding. It was found that the modified PCC increased paper strength at a given filler content compared to the coventional method. Negligible differences in optical properties and formation of paper, filler and fines retention and drainage on the wire section were observed between the modified and the conventional PCC. However, the decreased bulk of paper was observed when the modified PCC was used.

NCC를 이용한 PCC의 개질이 종이 물성에 미치는 영향 (Effect of the Modification of PCC with NCC on the Paper Properties)

  • 허밍;이용규;원종명
    • 펄프종이기술
    • /
    • 제47권4호
    • /
    • pp.136-143
    • /
    • 2015
  • It is well known that the use of PCC as a filler for printing paper making brought about the serious deterioration of strength properties of paper, although PCC could be helpful to reduce the energy consumption. The use of modified PCC with NCC was tried to solve and/or reduce the strength deterioration problem. NCC was prepared from SwBKP by the acid hydrolysis. There was no significant changes in chemical properties and crystalline structure. However the cyrstallinity of NCC was higher than those of SwBKP. The different dosage of NCC was applied to modify the properties of PCC. 0.1% of NCC dosage was enough to improve ash retention and paper properties. The use of modified PCC with NCC as a filler improved ash retention, bulk, opacity and formation without the serious deterioration of strength properties. Thus the use of modified PCC with NCC might be helpful for not only reduction of energy consumption but also increase of filler dosage without the significant sacrifice of strength properties by the optimization of retention system.

Preparation of PET Nanocomposites: Dispersion of Nanoparticles and Thermal Properties

  • Her, Ki-Young;Kim, Dae-Heum;Lim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.71-73
    • /
    • 2008
  • The development of polymer/inorganic nanocomposites has attracted a great deal of interest due to the improved hybrid properties derived from the two different components. Various nanoscale fillers have been used to enhance polymer mechanical and thermal properties, such as toughness, stiffness, and heat resistance. The effects of the filler on the final properties of the nanocomposites are highly dependent on the filler shape, particle size, aggregate size, surface characteristics, polymer/inorganic interactions, and degree of dispersion. In this paper, we describe the influence of different $CaCO_3$ dispersion methods on the thermal properties of polyethylene terephthalate (PET)/$CaCO_3$ composites: i.e., the adsorption of $CaCO_3$ on the modified PET surface, and the hydrophobic modification of the hydrophilic $CaCO_3$ surface. We prepared PET/$CaCO_3$ nanocomposites using a twin-screw extruder, and investigated their thermal properties and morphology.

Physical and Dielectric Properties of Aluminoborosilicate-Based Dielectrics Containing Different Divalent Oxides

  • Shin, Dong-Wook;Saji, Viswanathan S.;Gupta, Ravindra K.;Cho, Yong-Soo
    • 한국세라믹학회지
    • /
    • 제44권11호
    • /
    • pp.613-617
    • /
    • 2007
  • The variations of physical and dielectric properties of low temperature dielectrics based on typical aluminoborosilicate glasses modified with several divalent oxides were investigated. The divalent oxides studied here included CaO, MgO, BaO, SrO and ZnO. All samples containing either 35 wt% or 45 wt% alumina filler were prepared at the same processing condition and then fired at $850^{\circ}C$ for 30 min. The resultant characteristics of fired samples depended on the choice of the divalent ion and the content of the alumina filler. Except for the ZnO modification, all other samples containing 35 wt% filler demonstrated promising densification as they exhibited reasonably high densities of 3.07-3.31 $g/cm^3$ and high shrinkages of 14.0-16.4%. Particularly, the sample containing ZnO was distinguished with large variations compared to the base sample, which can be highlighted with earlier densification and crystallization at unexpectedly low temperatures. The negative effects of the ZnO modification on densification and dielectric properties were thought to be associated with earlier crystallization potentially by influencing effective densification via viscous flow. As an optimum composition, the sample containing only CaO showed the most promising characteristics such as $k{\sim}8.05$ and $tan{\delta}{\sim}0.0018$ when 35 wt% alumina filler was used.

The Thermal Properties of PVC-Ni Composite Materials

  • Moon, Tak-Jin;Kang Chang-Gyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제6권1호
    • /
    • pp.45-50
    • /
    • 1985
  • The glass transition temperature, dynamic shear moduli, and bulk viscosities of PVC, filled with nickel particles, were investigated. The glass temperature of the composite increased with increasing filler concentration. The data were interpreted by assuming that the interaction between filler particles and the polymer matrix reduces molecular mobility and flexibility of the polymer chains in the vicinity of the interfaces. The relative modulus for the PVC/Ni composite system followed the Kerner equation. The relative viscosities were strongly temperature dependent and did not agree with the conventional viscosity predictions for suspensions. It is suggested that the filler has a twofold effect on the viscosity of the composite materials; one is due to its mechanical presence and the other is due to modification of part of the polymer matrix caused by interaction. This phenomenon is approximately bounded by Kerner's predictions for suspensions.