• 제목/요약/키워드: fill power

검색결과 252건 처리시간 0.029초

박막의 조성비율에 따른 유기태양전지의 효율성 연구 (A Study about the Efficiency of Organic Photovoltaic Device as a function of the Material Concentration)

  • 김승주;이동근;박재형;공수철;김원기;류상욱
    • 반도체디스플레이기술학회지
    • /
    • 제8권3호
    • /
    • pp.1-5
    • /
    • 2009
  • In this study, we have shown the power conversion efficiency of organic thin film photovoltaic devices utilizing a conjugated polymer/fullerene bulk-hetero junction structure. We use MDMO-PPV(Poly[2-methoxy-5-(3,7-dimethyloctyloxy -1,4-phenylenevinylene) as an electron donor, PCBM([6,6]-Phenyl C61 butyric acid methyl ester) as an electron accepter, and PEDOT:PSS used as a HTL(Hole Transport Layer). We have fabricated OPV(Organic Photovoltaic) devices as a function of the MDMO-PPV/PCBM concentration from 1:1 to 1:5. The electrical characteristics of the fabricated devices were investigated by means of I-V, P-V, F·F(Fill Factor) and PCE(power conversion efficiency). The power conversion efficiency was gradually increased until 1:4 ratio, also the highest efficiency of 0.4996% was obtained at the ratio.

  • PDF

Study on Validity of 1-D Spherical Model on Aqua-plasma Power Estimation With Electrode Structure

  • 윤성영;장윤창;김곤호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.74-74
    • /
    • 2010
  • The aqua-plasma is the non-thermal plasma in electrical conductive electrolyte by generates the vapor film layer on the immersed metal electrode surface. This plasma can generate the hydroxyl radical by dissociate the water molecule with the plasma electron. To develop the plasma discharge device for high efficiency in the hydroxyl radical generation, proper model for estimation of plasma power is necessary. In this work, the 1-D spherical model was developed, considering temperature dependence material constants. The relation between the plasma power and hydroxyl generation was also studied by the comparison between the optical emission intensity from the hydroxyl radical using monochromator and estimated plasma power. First, the thickness of vapor layer thickness was estimated using the Navier-Stokes fluid equation in order to calculate the discharge E-field inside vapor layer. Using the E-field magnitude and power balance on the plasma generation, it was possible to estimate the plasma power. The plasma power was assumed to uniformly fill the vapor layer and the temperature of vapor layer was fixed in the boiling temperature of electrolyte, 375K. In the experiment, the aqua-plasma was discharged in the saline by applied the voltage on the bipolar electrode. The range of applied voltage was 234 to 280V-rms in the frequency of 380 kHz. Two type electrodes were produced with two ${\Phi}0.2$ tungsten. The plasma power was estimated from the V-I signal from the two high voltage probes and current probe. The estimated plasma power agreed with the profile of emission intensity when the plasma discharged between the metal electrode and vapor layer surface. However, when the plasma discharged between the metal electrodes, the increasing rate of emission intensity was lower than the increase of plasma power. It implies that the surface reaction is more sufficient rather than the volume reaction in the radical generation, due to the high density of water molecule in the liquid.

  • PDF

광 입사각에 따른 염료감응형 태양전지의 발전특성 분석 (The Characteristic Analysis of the Dye-sensitized Solar Cells as the Change of Incident Angle)

  • 서현웅;손민규;이경준;장진주;홍지태;김희제
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.124-127
    • /
    • 2008
  • Dye-sensitized solar cells (DSCs) have been proposed as a substitute for overcoming the limitation of Si solar cells because DSC has the various applications using advantages of DSC such as low cost, transparency and flexibility. Although some people point out low efficiency of DSC as the important problem at present, general views say that actually cumulative power is not insufficient as compared with Si solar cell. Therefore, we analyzed the characteristics of both cells according to the change of incident angle in this study. The insensibility about the incident angle has more developable time. Finally, DSC is able to fill a shortage of power caused from low efficiency of DSC for same time by developing during impossible time to develop in Si solar cell. As a result, DSC has 75% and 210% cumulative power of Si solar cell in summer and winter under the standard sunshine duration.

  • PDF

CuPc: $F_4$-TCNQ 정공 수송층이 도입된 P-i-n형 유기 박막 태양전지의 성능 특성 연구 (Performance Characteristics of p-i-n Type Organic Thin-film Photovoltaic Cell with CuPc: $F_4$-TCNQ Hole Transport Layer)

  • 박소현;강학수;나타라잔센틸루마르;박대원;최영선
    • 폴리머
    • /
    • 제33권3호
    • /
    • pp.191-197
    • /
    • 2009
  • 박막형 유기 태양전지의 성능 향상을 위하여 정공 수송층인 CuPc 층에 강한 p형 유기 반도체인 $F_4$-TCNQ을 도핑하여 ITO/PEDOT:PSS/CuPc: $F_4$-TCNQ(5wt%)/CuPc:C60 (blending ratio 1 : 1)/C60/BCP/LiF/Al의 이종 접합 구조를 가지는 P-i-n형 유기 박막형 태양전지 소자를 진공증착 장비를 이용하여 제조한 후, 유기 태양전지의 전류 밀도-전압(J-V) 특성, 단락 전류($J_{sc}$), 개방 전압($V_{oc}$), 충진 인자(fill factor: FF), 에너지 전환 효율(${\eta}_e$) 등을 측정하고 계산하여 성능 굉가를 수행하였다. CuPc 층에 $F_4$-TCNQ을 도핑함으로써 에너지 흡수 스펙트럼에서 흡수강도가 증가하였으며, $F_4$-TCNQ가 도핑된 CuPc 박막에서 $F_4$-TCNQ 유기 분자의 분산성 향상, 박막의 표면 균일성, 주입 전류(injection currents) 향상 효과등에 의해서 제조된 p-i-n형 유기 박막 태양전지의 성능이 향상되는 것으로 확인되었다. 제조된 유기 태양전지의 에너지 전환 효율(${\eta}_e$)은 0.15%로 실리콘 태양전지와 비교해서 아직도 성능 향상을 위한 많은 노력이 필요함을 보여 준다.

Performance Comparison of CuPc, Tetracene, Pentacene-based Photovoltaic Cells with PIN Structures

  • Hwang, Jong-Won;Kang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyun;Jo, Young-Ran;Choe, Young-Son
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.311-312
    • /
    • 2010
  • The fabricated photovoltaic cells based on PIN heterojunctions, in this study, have a structure of ITO/poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)/donor/donor:C60(10nm)/C60(35nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline(8nm)/Al(100nm). The thicknesses of an active layer(donor:C60), an electron transport layer(C60), and hole/exciton blocking layer(BCP) were fixed in the organic photovoltaic cells. We investigated the performance characteristics of the PIN organic photovoltaic cells with copper phthalocyanine(CuPc), tetracene and pentacene as a hole transport layer. Discussion on the photovoltaic cells with CuPc, tetracene and pentacene as a hole transport layer is focussed on the dependency of the power conversion efficiency on the deposition rate and thickness of hole transport layer. The device performance characteristics are elucidated from open-circuit-voltage(Voc), short-circuit-current(Jsc), fill factor(FF), and power conversion efficiency($\eta$). As the deposition rate of donor is reduced, the power conversion efficiency is enhanced by increased short-circuit-current(Jsc). The CuPc-based PIN photovoltaic cell has the limited dependency of power conversion efficiency on the thickness of hole transport layer because of relatively short exciton diffusion length. The photovoltaic cell using tetracene as a hole transport layer, which has relatively long diffusion length, has low efficiency. The maximum power conversion efficiencies of CuPc, tetracene, and pentacene-based photovoltaic cells with optimized deposition rate and thickness of hole transport layer have been achieved to 1.63%, 1.33% and 2.15%, respectively. The photovoltaic cell using pentacene as a hole transport layer showed the highest efficiency because of dramatically enhanced Jsc due to long diffusion length and strong thickness dependence.

  • PDF

Systems Engineering Approach to the Heat Transfer Analysis of PLUS 7 Fuel Rod Using ANSYS FEM Code

  • Park, Sang-Jun;Mutembei, Mutegi Peter;Namgung, Ihn
    • 시스템엔지니어링학술지
    • /
    • 제13권1호
    • /
    • pp.33-39
    • /
    • 2017
  • This paper describes the system engineering approach for the heat transfer analysis of plus7 fuel rod for APR1400 using, a commercial software, ANSYS. The fuel rod is composed of fuel pellets, fill gas, end caps, plenum spring and cladding. The heat is transferred from the pellet outward by conduction through the pellet, fill gas and cladding and further by convection from the cladding surface to the coolant in the flow channel. The goal of this paper is to demonstrate the temperature and heat flux change from the fuel centerline to the cladding surface when having maximum fuel centerline temperature at 100% power. This phenomenon is modelled using the ANSYS FEM code and analyzed for steady state temperature distribution across the fuel pellet and clad and the results were compared to the standard values given in APR1400 SSAR. Specifically the applicability of commercial software in the evaluation of nuclear fuel temperature distribution has been accounted. It is note that special codes have been used for fuel rod mechanical analysis which calculates interrelated effects of temperature, pressure, cladding elastic and plastic behavior, fission gas release, and fuel densification and swelling under the time-varying irradiation conditions. To satisfactorily meet this objective we apply system engineering methodologies to formulate the process and allow for verification and validation of the results acquired. The close proximity of the results obtained validated the accuracy of the FEM analysis of the 2D axisymmetric model and 3D model. This result demonstrated the validity of commercial software instead of proprietary in-house code that is more costly to develop and maintain.

SOI 구조 이용한 결정질 규소 태양전지의 최적설계 (Effect of Design Parameters on the Efficiency of the Solar Cells Fabricated Using SOI Structure)

  • 이강민;김영관
    • 한국재료학회지
    • /
    • 제9권9호
    • /
    • pp.890-895
    • /
    • 1999
  • 본 연구에서는 SOI 구조를 이용한 50$\mu\textrm{m}$ 두계의 규소 태양전지의 이용 가능성과 제한사항을 제시하기 위하여, interdigitated contact을 이용한 전극을 형성하도록 전지를 설계한 후 단계별 사진공정을 통해 태양전지를 제조하였다. Bonded SOI wafer를 이용하여 제조된 50$\mu\textrm{m}$ 두께의 결정질 규소 태양전지의 효율은 전극간격이 1100$\mu\textrm{m}$과 base width가 35$\mu\textrm{m}$인 경우에서 11.5%로 가장 높은 값을 나타내었다. 또한 실험결과로부터 전면전극을 이용한 태양전지의 구조는 power loss를 최소화하는 최적의 base fraction을 적용하는 것이 필요하며, 전지의 효율은 fill factor에 강한 의존성을 나타내기 때문에 fill factor loss를 최소화하는 설계조건이 필요함을 알 수 있었다.

  • PDF

High-Speed BLDC Motor Design for Suction Fan and Impact on the Loss caused by Core Welding

  • Hong, Hyun-Seok;Kim, In-Gun;Lee, Ho-Joon;Go, Sung-Chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.126-133
    • /
    • 2017
  • This paper deals with the effects of welding, which is done to fix the stator stack, on a motor in case of fabricating a prototype motor that is manufactured in a small quantity. In the case of a small motor, the stator is designed and fabricated with the segmented core as a way to raise the fill factor of winding wire to the utmost within a limited size. In case of fabrication by welding both inside and outside of the stator in order to fix the segmented-core stator, the effects of stack are ignored, and the eddy current loss occurs. This paper performed the no-load test on an IPM-type BLDC motor for driving the suction fan of a vacuum cleaner, which was manufactured by using a segmented-core stator. As a result of the test, it was found that input power more than expected was supplied. To analyze the effects of welding by using the finite element analysis method and verify them experimentally, a stator was re-manufactured by bonding, and input power supplied during the no-load test was compared.

역률 개선 기능을 가진 밸리필 플라이백 컨버터의 실용적 설계 및 구현 (Practical Design and Implementation of Valley-Fill Flyback Converter Having Power Factor Correction)

  • 김세민;김상연;공성재;강경수;노정욱
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.225-226
    • /
    • 2016
  • 통상적으로, 기존 단상 AC 전원용 플라이백 컨버터는 75W 이상의 조건에서 역률개선회로를 채용하게 된다. 이에 따라 2-Stage 형태의 회로를 구성해야 하기 때문에, 회로의 부품 수 증가 및 전력 효율을 낮추는 단점이 동반된다. 또한, 다수의 자성소자(인덕터, 트랜스포머) 사용이 필수적이며, 이는 회로의 부피 및 원가 상승의 주요한 원인이 된다. 본 논문에서는 역률 개선 기능을 가진 밸리필 플라이백 컨버터의 실용적 설계 및 구현 방안을 제시한다. 더불어, 밸리필 정류기의 전해 커패시터 Short 시 방폭 문제를 해결하기 위한 OVP(Over Voltage Protection) 회로의 실용적 설계 방법을 제시하여 제안 회로의 양산 가능성을 증명한다. 본 논문에서는 제안 회로의 이론적 특성을 분석하고, 78W 급 플라이백 컨버터 시작품의 실험적 분석을 통해 그 타당성을 검증한다.

  • PDF

액체질소 냉각 시 임의의 홀을 가진 초전도체의 열응력 해석 (Transient Thermal Behaviors of Melt Processed Superconductors with Artificial Holes During the Cooling in Liquid Nitrogen)

  • 장건익;이호진;김찬중;한영희;성태현
    • Progress in Superconductivity
    • /
    • 제11권1호
    • /
    • pp.52-56
    • /
    • 2009
  • Temperature distributions and thermal stresses were calculated and analyzed to investigate the effect of the artificial holes to the transient behaviors of the superconductors which was cooled in liquid nitrogen. Three dimensional finite element method was used to calculated the transient temperature and thermal stresses in the superconductors. The cooling speed of the superconductors with holes is faster than those without holes. Because the thermal stresses calculated in the superconductors can be relaxed by the distributed holes, the volume of the peak tensile stress decreases during the cooling in liquid nitrogen. If optimal metal, which can maintain the relaxation of thermal stresses, is used to fill and reinforce the artificial holes, the probability of failure of the superconductors may be decreased by the decrease of volume of peak tensile stress.

  • PDF