• Title/Summary/Keyword: filamentous fungus

Search Result 86, Processing Time 0.031 seconds

Identification of Genes Associated with Fumonisin Biosynthesis in Fusarium verticillioides via Proteomics and Quantitative Real-Time PCR

  • Choi, Yoon-E.;Shim, Won-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.648-657
    • /
    • 2008
  • In this study, we used functional genomic strategies, proteomics and quantitative real-time (qRT)-PCR, to advance our understanding of genes associated with fumonisin production in the fungus Fusarium verticillioides. Earlier studies have demonstrated that deletion of the FCC1 gene, which encodes a C-type cyclin, leads to a drastic reduction in fumonisin production and conidiation in the mutant strain (FT536). The premise of our research was that comparative analysis of F. verticillioides wild-type and FT536 proteomes will reveal putative proteins, and ultimately corresponding genes, that are important for fumonisin biosynthesis. We isolated proteins that were significantly upregulated in either the wild type or FT536 via two-dimensional polyacrylamide gel electrophoresis, and subsequently obtained sequences by mass spectrometry. Homologs of identified proteins, e.g., carboxypeptidase, laccase, and nitrogen metabolite repression protein, are known to have functions involved in fungal secondary metabolism and development. We also identified gene sequences corresponding to the selected proteins and investigated their transcriptional profiles via quantitative real-time (qRT)-PCR in order to identify genes that show concomitant expression patterns during fumonisin biosynthesis. These genes can be selected as targets for functional analysis to further verify their roles in $FB_1$ biosynthesis.

Eosin Biosorption from Aqueous Solution on Two Types of Activated Sludge

  • Cherifa, Farsi;Hakima, Cherifi;Radhia, Yous;Salah, Hanini;Razika, Khalladi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.80-85
    • /
    • 2022
  • In wastewater treatment processes huge quantities of sludge are produced continuously each year. This work investigated the reuse of two types of sludge as biosorbents of a toxic dye. The potential of granular and filamentous fungus dried sludge for the elimination of eosin from aqueous solution was studied in batch system. The effect of initial concentration and temperature was examined. Maximum uptake was observed at 100 mg l-1 and 30 ℃. The maximum removal rate was 92% for the granular sludge and 90% for the filamentous one. Equilibrium was attained after 30 min for the studied dye concentrations. The equilibrium uptake increased with the initial eosin concentration. The Freundlich and Langmuir adsorption models were also investigated. The reuse of disposed sludge as adsorbent could be a solution for the valorization of such dangerous waste to resolve two environmental problems at the same time.

Identification and Characterization of the Aquaporin Gene aqpA in a Filamentous Fungus Aspergillus nidulans (사상성 진균 Aspergillus nidulans에서 아쿠아포린 유전자 aqpA의 분리 및 분석)

  • Oh, Dong-Soon;Lu, Han-Yan;Han, Kap-Hoon
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • Aquaporin is a water channel protein, which is classified as Major Intrinsic Protein (MIP), found in almost all organisms from bacteria to human. To date, more than 200 members of this family were identified. There are two major categories of MIP channels, orthodox aquaporins and aquaglyceroporins, which facilitate the diffusion across biological membranes of water or glycerol and other uncharged compounds, respectively. The full genome sequencing of various fungal species revealed 3 to 5 aquaporins in their genome. Although some functions of aquaporins found in yeast were characterized, however, no functional characteristics were studied so far in filamentous fungi, including Aspergillus sp. In this study, one orthodox aquaporin homolog gene, aqpA, and four aquaglyceroporin homologs, aqpB-E, in a model filamentous fungus Aspergillus nidulans were identified and the function of the aqpA gene was characterized. Knock-out of the aqpA gene didn't show any obvious phenotypic change under the osmotic stress, indicating that the function of the gene does not involved in the osmotic stress response or the function could be redundant. However, the mutant showed antifungal susceptibility resistance phenotype, suggesting that the function of the aqpA gene could be involved in sensing the antifungal substances rather than the osmotic stress response.

Factors Affecting Pellet Formation of Phosphate-solubilizing Fungus, Aspergillus sp. PS-104 in Submerged Culture (인산가용화균 Aspergillus sp. PS-104의 액침배양중 Pellet 크기에 영향을 주는 요인)

  • Shin, Seung-Yong;Kang, Sun-Chul
    • Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.77-81
    • /
    • 2007
  • In order to minimize the mycelial pellet size of a high phosphate-solubilizing fungus, Aspergillus sp. PS-104 in liquid media, one of the critical obstacles during the submerged culture of filamentous fungi, an investigation was focused on the culture conditions (media and inoculum size) and additives (different soils, surfactants and polyethylene glycol 200). When the fungus was cultured in PDB, SDB and YPD media. their pellet sizes decreased in the order of SDB=YPD>PDB. At the higher concentrations of initial inoculum ranging from $1{\times}10^3$ to $1{\times}10^7$ conidia/ml, the smaller size of pellet was formed in the PDB medium. In addition, the pellet size was effectively reduced by 1/6${\sim}$1/4 by the addition of 0.1% soil containing zeolite, diatomite, loess, kaoline and talc, excluding bentonite. The addition of 0.1% Tween 80, Triton X-100 and PEG 200 also decreased the pellet size, but SDS completely inhibited the fungal growth.

Peroxiredoxin System of Aspergillus nidulans Resists Inactivation by High Concentration of Hydrogen Peroxide-Mediated Oxidative Stress

  • Xia, Yang;Yu, Haijun;Zhou, Zhemin;Takaya, Naoki;Zhou, Shengmin;Wang, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.145-156
    • /
    • 2018
  • Most eukaryotic peroxiredoxins (Prxs) are readily inactivated by a high concentration of hydrogen peroxide ($H_2O_2$) during catalysis owing to their "GGLG" and "YF" motifs. However, such oxidative stress sensitive motifs were not found in the previously identified filamentous fungal Prxs. Additionally, the information on filamentous fungal Prxs is limited and fragmentary. Herein, we cloned and gained insight into Aspergillus nidulans Prx (An.PrxA) in the aspects of protein properties, catalysis characteristics, and especially $H_2O_2$ tolerability. Our results indicated that An.PrxA belongs to the newly defined family of typical 2-Cys Prxs with a marked characteristic that the "resolving" cysteine ($C_R$) is invertedly located preceding the "peroxidatic" cysteine ($C_P$) in amino acid sequences. The inverted arrangement of $C_R$ and $C_P$ can only be found among some yeast, bacterial, and filamentous fungal deduced Prxs. The most surprising characteristic of An.PrxA is its extraordinary ability to resist inactivation by extremely high concentrations of $H_2O_2$, even that approaching 600 mM. By screening the $H_2O_2$-inactivation effects on the components of Prx systems, including Trx, Trx reductase (TrxR), and Prx, we ultimately determined that it is the robust filamentous fungal TrxR rather than Trx and Prx that is responsible for the extreme $H_2O_2$ tolerence of the An.PrxA system. This is the first investigation on the effect of the electron donor partner in the $H_2O_2$ tolerability of the Prx system.

Microbial Diversity in Korean Traditional Fermenting Starter, Nuruk, Collected in 2013 and 2014

  • Seo, Jeong Ah
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.11a
    • /
    • pp.11-11
    • /
    • 2015
  • A total of sixty-six samples of Nuruk, a fermention starter used to make the Korean traditional rice wine, Makgeolli, were collected from central and southern regions of Korea in 2013 and 2014. We classified two groups of the Nuruk samples, "commercial" and "home-made", according to the manufacturing procedure and purpose of use. Commercial Nuruks were made in a controlled environment where the temperature and humidity are fixed and the final product is supplied to Makgeolli manufacturers. Home-made Nuruks were made under uncontrolled conditions in the naturally opened environment and were intended for use in the production of small amounts of home-brewed Makgeolli. We obtained more than five hundred isolates including filamentous fungi and yeasts from the Nuruk samples followed by identification of fungal species. Also we stored glycerol stocks of each single isolate at $-70^{\circ}C$. We identified the species of each isolate based on the sequences of ITS regions amplified with two different universal primer pairs. We also performed morphological characterization of the filamentous fungi and yeast species through observations under the microscope. We investigated the major fungal species of commercial and home-made Nuruks by counting the colony forming units (CFU) and analyzing the occurrence tendency of fungal species. While commercial Nuruks contained mostly high CFU of yeasts, home-made Nuruks showed relatively high occurrence of filamentous fungi. One of the representative Nuruk manufacturers used both domestic wheat bran and imported ones, mainly from US, as raw material. Depending on the source of ingredient, the fungal diversity was somewhat different. Another commercial Nuruk sample was collected twice, once in 2013 and again in 2014, and showed different diversity of fungal species in each year. Nuruks obtained from the southern regions of Korea and Jeju island showed high frequency of yeast such as Saccharomycopsis fibuligera and Pichia species as well as unique filamentous fungus, Monascus species. S. fibuligera was easily found in many Nuruk samples with high CFU. The major filamentous fungi were Aspergillus, Lichtheimia, Mucor and Penicillium species. In order to further our understanding of the isolates and their potential industrial applications, we assayed three enzymes, alpha amylase, glucoamylase and acid protease from 140 isolates out of about five hundred isolates and selected about 10 excellent strains with high enzyme activities. With these fungal isolates, we will perform omics analyses including genomics, transcriptomics, metabolic pathway analyses, and metabolomics followed by whole genome sequencing of unique isolates associated with the basic research of Nuruk and that also has applications in the Makgeolli making process.

  • PDF

Evaluation of Potential Reference Genes for Quantitative RT-PCR Analysis in Fusarium graminearum under Different Culture Conditions

  • Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.301-309
    • /
    • 2011
  • The filamentous fungus Fusarium graminearum is an important cereal pathogen. Although quantitative realtime PCR (qRT-PCR) is commonly used to analyze the expression of important fungal genes, no detailed validation of reference genes for the normalization of qRT-PCR data has been performed in this fungus. Here, we evaluated 15 candidate genes as references, including those previously described as housekeeping genes and those selected from the whole transcriptome sequencing data. By a combination of three statistical algorithms (BestKeeper, geNorm, and NormFinder), the variation in the expression of these genes was assessed under different culture conditions that favored mycelial growth, sexual development, and trichothecene mycotoxin production. When favoring mycelial growth, GzFLO and GzUBH expression were most stable in complete medium. Both EF1A and GzRPS16 expression were relatively stable under all conditions on carrot agar, including mycelial growth and the subsequent perithecial induction stage. These two genes were also most stable during trichothecene production. For the combined data set, GzUBH and EF1A were selected as the most stable. Thus, these genes are suitable reference genes for accurate normalization of qRT-PCR data for gene expression analyses of F. graminearum and other related fungi.

Velvet Regulators in Aspergillus spp. (Aspergillus spp.에서의 Velvet 조절자)

  • Park, Hee-Soo;Yu, Jae-Hyuk
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.409-419
    • /
    • 2016
  • Filamentous Aspergillus spp. are the most common fungi in our environment and can be beneficial and/or pathogenic to humans. Many Aspergillus spp. reproduce by forming asexual spores and can synthesize various secondary metabolites. A series of studies has revealed that Velvet regulators are fungus-specific transcription factors coordinating fungal growth, development, and secondary metabolism in the model fungus Aspergillus nidulans. Proteins of the Velvet family form various complexes that play diverse roles in the life cycle of A. nidulans. In other Aspergillus spp., proteins of this family are highly conserved and coordinate asexual development and secondary metabolism. This review summarizes the functions of Velvet proteins in Aspergillus spp.

Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola

  • Choi, Yoon-E;Lee, Changsu;Goodwin, Stephen B.
    • Mycobiology
    • /
    • v.44 no.1
    • /
    • pp.38-47
    • /
    • 2016
  • The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola.

Transformation of a Filamentous Fungus Cryphonectria parasitica Using Agrobacterium tumefaciens

  • Park, Seung-Moon;Kim, Dae-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.217-222
    • /
    • 2004
  • As Agrobacterium tumefaciens, which has long been used to transform plants, is known to transfer T-DNA to budding yeast, Saccharomyces cerevisiae, a variety of fungi were subjected to the A. tumefaciens-mediated transformation to improve their transformation frequency and feasibility. The A. tumefaciens-mediated transformation of chestnut blight fungus, Cryphonectria parasitica, is performed in this study as the first example of transformation of a hardwood fungal pathogen. The transfer of the binary vector pBIN9-Hg, containing the bacterial hygromycin B phosphotransferase gene under the control of the Aspergillus nidulans trpC promoter and terminator, as a selectable marker, led to the selection of more than 1,000 stable, hygromycin B-resistant transformants per 1${\times}$10$\^$6/ conidia of C. parasitica. The putative transformants appeared to be mitotically stable. The transformation efficiency appears to depend on the bacterial strain, age of the bacteria cell culture and ratio of fungal spores to bacterial cells. PCR and Southern blot analysis indicated that the marker gene was inserted at different chromosomal sites. Moreover, three transformants out of ten showed more than two hybridizing bands, suggesting more than two copies of the inserted marker gene are not uncommon.