Browse > Article
http://dx.doi.org/10.4014/mbl.1607.07007

Velvet Regulators in Aspergillus spp.  

Park, Hee-Soo (School of Food Science and Biotechnology, Institute of Agricultural Science & Technology, Kyungpook National University)
Yu, Jae-Hyuk (Department of Bacteriology and Genetics, University of Wisconsin)
Publication Information
Microbiology and Biotechnology Letters / v.44, no.4, 2016 , pp. 409-419 More about this Journal
Abstract
Filamentous Aspergillus spp. are the most common fungi in our environment and can be beneficial and/or pathogenic to humans. Many Aspergillus spp. reproduce by forming asexual spores and can synthesize various secondary metabolites. A series of studies has revealed that Velvet regulators are fungus-specific transcription factors coordinating fungal growth, development, and secondary metabolism in the model fungus Aspergillus nidulans. Proteins of the Velvet family form various complexes that play diverse roles in the life cycle of A. nidulans. In other Aspergillus spp., proteins of this family are highly conserved and coordinate asexual development and secondary metabolism. This review summarizes the functions of Velvet proteins in Aspergillus spp.
Keywords
Aspergillus; velvet proteins; VeA; VelB; VosA;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Chang PK, Scharfenstein LL, Li P, Ehrlich KC. 2013. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Fungal Genet. Biol. 58-59: 71-79.   DOI
2 Crespo-Sempere A, Marin S, Sanchis V, Ramos AJ. 2013. VeA and LaeA transcriptional factors regulate ochratoxin A biosynthesis in Aspergillus carbonarius. Int. J. Food Microbiol. 166: 479-486.   DOI
3 Dhingra S, Andes D, Calvo AM. 2012. VeA regulates conidiation, gliotoxin production, and protease activity in the opportunistic human pathogen Aspergillus fumigatus. Eukaryot. Cell 11: 1531-1543.   DOI
4 Park H-S, Ni M, Jeong K-C, Kim YH, Yu J-H. 2012. The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans. PLoS One 7: e45935.   DOI
5 Park H-S, Yu J-H. 2012. Genetic control of asexual sporulation in filamentous fungi. Curr. Opin. Microbiol. 15: 669-677.   DOI
6 Park H-S, Yu YM, Lee MK, Maeng PJ, Kim SC, Yu J-H. 2015. Velvetmediated repression of beta-glucan synthesis in Aspergillus nidulans spores. Sci. Rep. 5: 10199.   DOI
7 Park HS, Yu JH. 2016. Developmental regulators in Aspergillus fumigatus. J. Microbiol. 54: 223-231.   DOI
8 Purschwitz J, Muller S, Fischer R. 2009. Mapping the interaction sites of Aspergillus nidulans phytochrome FphA with the global regulator VeA and the White Collar protein LreB. Mol. Genet. Genomics 281: 35-42.   DOI
9 Purschwitz J, Muller S, Kastner C, Schoser M, Haas H, Espeso EA, et al. 2008. Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr. Biol. 18: 255-259.   DOI
10 Reverberi M, Ricelli A, Zjalic S, Fabbri AA, Fanelli C. 2010. Natural functions of mycotoxins and control of their biosynthesis in fungi. Appl. Microbiol. Biotechnol. 87: 899-911.   DOI
11 Bennett JW. 2010. An Overview of the Genus Aspergillus. Aspergillus: Molecular Biology and Genomics 1-17.
12 Beyhan S, Gutierrez M, Voorhies M, Sil A. 2013. A temperature-responsive network links cell shape and virulence traits in a primary fungal pathogen. PLoS Biol. 11: e1001614.   DOI
13 Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, et al. 2005. The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr. Biol. 15: 1833-1838.   DOI
14 Bok JW, Keller NP. 2004. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 3: 527-535.   DOI
15 Bayram O, Braus GH. 2012. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol. Rev. 36: 1-24.   DOI
16 Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, et al. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320: 1504-1506.   DOI
17 Jeong HY, Han DM, Jahng KY, Chae KS. 2000. The rpl16a gene for ribosomal protein L16A identified from expressed sequence tags is differentially expressed during sexual development of Aspergillus nidulans. Fungal Genet. Biol. 31: 69-78.   DOI
18 Geiser DM, Klich MA, Frisvad JC, Peterson SW, Varga J, Samson RA. 2007. The current status of species recognition and identification in Aspergillus. Stud. Mycol. 59: 1-10.   DOI
19 Han KH, Kim JH, Moon H, Kim S, Lee SS, Han DM, et al. 2008. The Aspergillus nidulans esdC (early sexual development) gene is necessary for sexual development and is controlled by veA and a heterotrimeric G protein. Fungal Genet. Biol. 45: 310-318.   DOI
20 Hedtke M, Rauscher S, Rohrig J, Rodriguez-Romero J, Yu Z, Fischer R. 2015. Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Mol. Microbiol. 97: 733-745.   DOI
21 Kafer E. 1965. Origins of translocations in Aspergillus nidulans. Genetics 52: 217-232.
22 Kamei K, Watanabe A. 2005. Aspergillus mycotoxins and their effect on the host. Med. Mycol. 43: S95-S99.   DOI
23 Sarikaya-Bayram O, Palmer JM, Keller N, Braus GH, Bayram O. 2015. One Juliet and four Romeos: VeA and its methyltransferases. Front. Microbiol. 6: 1.
24 Reyes-Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A, Gallmetzer A, et al. 2010. Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol. Microbiol. 76: 1376-1386.   DOI
25 Roberts RG. 2013. The velvet underground emerges. PLoS Biol. 11: e1001751.   DOI
26 Rogers S, Wells R, Rechsteiner M. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364-368.   DOI
27 Roze LV, Chanda A, Laivenieks M, Beaudry RM, Artymovich KA, Koptina AV, et al. 2010. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism. BMC Biochem. 11: 33.   DOI
28 Sarikaya-Bayram O, Bayram O, Feussner K, Kim JH, Kim HS, Kaever A, et al. 2014. Membrane-bound methyltransferase complex VapA-VipC-VapB guides epigenetic control of fungal development. Dev. Cell 29: 406-420.   DOI
29 Sarikaya Bayram O, Bayram O, Valerius O, Park H-S, Irniger S, Gerke J, et al. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell-type specificity. PLoS Genet. 6: e1001226.   DOI
30 Sprote P, Brakhage AA. 2007. The light-dependent regulator velvet A of Aspergillus nidulans acts as a repressor of the penicillin biosynthesis. Arch. Microbiol. 188: 69-79.   DOI
31 Stinnett SM, Espeso EA, Cobeno L, Araujo-Bazan L, Calvo AM. 2007. Aspergillus nidulans VeA subcellular localization is dependent on the importin alpha carrier and on light. Mol. Microbiol. 63: 242-255.   DOI
32 Timberlake WE. 1990. Molecular genetics of Aspergillus development. Ann. Rev. Genet. 24: 5-36.   DOI
33 Adams TH, Wieser JK, Yu J-H. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62: 35-54.
34 Duran RM, Cary JW, Calvo AM. 2007. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl. Microbiol. Biotechnol. 73: 1158-1168.
35 Duran RM, Gregersen S, Smith TD, Bhetariya PJ, Cary JW, Harris-Coward PY, et al. 2014. The role of Aspergillus flavus veA in the production of extracellular proteins during growth on starch substrates. Appl. Microbiol. Biotechnol. 98: 5081-5094.   DOI
36 Ebbole DJ. 2010. The Conidium. Cellular and Molecular Biology of Filamentous Fungi. 577-590.
37 Ahmed YL, Gerke J, Park H-S, Bayram O, Neumann P, Ni M, et al. 2013. The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-kappaB. PLoS Biol. 11: e1001750.   DOI
38 Amaike S, Keller NP. 2009. Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus. Eukaryot. Cell 8: 1051-1060.   DOI
39 Atoui A, Kastner C, Larey CM, Thokala R, Etxebeste O, Espeso EA, et al. 2010. Cross-talk between light and glucose regulation controls toxin production and morphogenesis in Aspergillus nidulans. Fungal Genet. Biol. 47: 962-972.   DOI
40 Baidya S, Duran RM, Lohmar JM, Harris-Coward PY, Cary JW, Hong SY, et al. 2014. VeA is associated with the response to oxidative stress in the aflatoxin producer Aspergillus flavus. Eukaryot. Cell 13: 1095-1103.   DOI
41 Wang F, Dijksterhuis J, Wyatt T, Wosten HA, Bleichrodt RJ. 2015. VeA of Aspergillus niger increases spore dispersing capacity by impacting conidiophore architecture. Antonie van Leeuwenhoek. 107: 187-199.   DOI
42 Todd RB, Hynes MJ, Andrianopoulos A. 2006. The Aspergillus nidulans rcoA gene is required for veA-dependent sexual development. Genetics 174: 1685-1688.   DOI
43 Tsitsigiannis DI, Zarnowski R, Keller NP. 2004. The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J. Biol. Chem. 279: 11344-11353.   DOI
44 Vienken K, Scherer M, Fischer R. 2005. The Zn(II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics 169: 619-630.   DOI
45 Yager LN. 1992. Early developmental events during asexual and sexual sporulation in Aspergillus nidulans. Biotechnology 23: 19-41.
46 Yu J-H. 2006. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans. J. Microbiol. 44: 145-154.
47 Yu J-H, Keller N. 2005. Regulation of secondary metabolism in filamentous fungi. Ann. Rev. Phytopathol. 43: 437-458.   DOI
48 Keller NP, Turner G, Bennett JW. 2005. Fungal secondary metabolism - from biochemistry to genomics. Nat. Rev. Microbiol. 3: 937-947.   DOI
49 Bayram O, Bayram OS, Ahmed YL, Maruyama J, Valerius O, Rizzoli SO, et al. 2012. The Aspergillus nidulans MAPK module AnSte11-Ste50-Ste7-Fus3 controls development and secondary metabolism. PLoS Genet. 8: e1002816.   DOI
50 Kato N, Brooks W, Calvo AM. 2003. The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot. Cell 2: 1178-1186.   DOI
51 Kensler TW, Roebuck BD, Wogan GN, Groopman JD. 2011. Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology. Toxicol. Sci. 120: S28-48.   DOI
52 Calvo AM, Wilson RA, Bok JW, Keller NP. 2002. Relationship between secondary metabolism and fungal development. Microbiol. Mol. Biol. Rev. 66: 447-459.   DOI
53 Bok JW, Soukup AA, Chadwick E, Chiang YM, Wang CC, Keller NP. 2013. VeA and MvlA repression of the cryptic orsellinic acid gene cluster in Aspergillus nidulans involves histone 3 acetylation. Molecul. Microbiol. 89: 963-974.   DOI
54 Calvo AM. 2008. The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet. Biol. 45: 1053-1061.   DOI
55 Calvo AM, Bok J, Brooks W, Keller NP. 2004. veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl. Environ. Microbiol. 70: 4733-4739.   DOI
56 Cary JW, Harris-Coward PY, Ehrlich KC, Di Mavungu JD, Malysheva SV, De Saeger S, et al. 2014. Functional characterization of a veA-dependent polyketide synthase gene in Aspergillus flavus necessary for the synthesis of asparasone, a sclerotium-specific pigment. Fungal Genet. Biol. 64: 25-35.   DOI
57 Casselton L, Zolan M. 2002. The art and design of genetic screens: filamentous fungi. Nat. Rev. Genet. 3: 683-697.   DOI
58 Krijgsheld P, Bleichrodt R, van Veluw GJ, Wang F, Muller WH, Dijksterhuis J, et al. 2013. Development in Aspergillus. Stud. Mycol. 74: 1-29.   DOI
59 Kim H, Han K, Kim K, Han D, Jahng K, Chae K. 2002. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet. Biol. 37: 72-80.   DOI
60 Krappmann S, Bayram O, Braus GH. 2005. Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot. Cell 4: 1298-1307.   DOI
61 Marui J, Ohashi-Kunihiro S, Ando T, Nishimura M, Koike H, Machida M. 2010. Penicillin biosynthesis in Aspergillus oryzae and its overproduction by genetic engineering. J. Biosci. Bioeng. 110: 8-11.   DOI
62 Mooney JL, Hassett DE, Yager LN. 1990. Genetic analysis of suppressors of the veA1 mutation in Aspergillus nidulans. Genetics 126: 869-874.
63 Mooney JL, Yager LN. 1990. Light is required for conidiation in Aspergillus nidulans. Genes Dev. 4: 1473-1482.   DOI
64 Ni M, Yu J-H. 2007. A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2: e970.   DOI
65 Palmer JM, Theisen JM, Duran RM, Grayburn WS, Calvo AM, Keller NP. 2013. Secondary metabolism and development is mediated by LlmF control of VeA subcellular localization in Aspergillus nidulans. PLoS Genet. 9: e1003193.   DOI
66 Park H-S, Bayram O, Braus GH, Kim SC, Yu J-H. 2012. Characterization of the velvet regulators in Aspergillus fumigatus. Molecul. Microbiol. 86: 937-953.   DOI
67 Park H-S, Nam TY, Han KH, Kim SC, Yu J-H. 2014. VelC positively controls sexual development in Aspergillus nidulans. PLoS One 9: e89883.   DOI