• Title/Summary/Keyword: filamentous fungus

Search Result 86, Processing Time 0.038 seconds

Protoplast-Mediated Transformation of the Filamentous Fungus Cladosporium phlei: Evidence of Tandem Repeats of the Integrative Transforming Vector

  • Kim, Jung-Ae;Kim, Jung-Mi;Kim, Hwan-Gyu;Kim, Beom-Tae;Hwang, Ki-Jun;Park, Seung-Moon;Yang, Moon-Sik;Kim, Dae-Hyuk
    • The Plant Pathology Journal
    • /
    • v.25 no.2
    • /
    • pp.179-183
    • /
    • 2009
  • To facilitate the genetic manipulation of Cladosporium phlei, a causal agent of leaf spot disease in timothy (Phleum pretense), protoplast-mediated transformation of C. phlei has been developed and the resulting transformants were characterized in this study. Hygromycin B resistance was applied as a dominant selection marker due to the sensitivity of C. phlei to this antibiotic. The transformation efficiency ranged from approximately 20-100 transformants per experiment. Southern blot analysis of stable transformants revealed that transformation occurred by way of stable integration of the vector DNA into the fungal chromosome. PCR analysis and plasmid rescuing of randomly selected transformants suggested that integration of tandem repeat copies of vector DNA was common. In addition, multiple integrations of the transforming vector at different chromosomal sites were also observed. The establishment of a transformation method for C. phlei facilitates strain improvement of this fungus and can be applied as an initial step in the molecular analysis of pigment production in this fungus.

IMPROVEMENT OF GENETIC TRANSFORMATION SYSTEM IN ASPERGILLUS ORYZAE

  • Lee, Jae-Won;Hahm, Young-Tae
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.215-218
    • /
    • 2000
  • Aspergillus oryzae is a filamentous fungus classified in the group Aspergillaceae Ascomycetes. It is an important microorganism for industrial production of enzymes and fermented food productions. The genetic transformation system in A. oryzae was used to protoplast mediated transformation with PEG/$CaCl_2$. When the protoplast was used, the regeneration efficiency was decreased and then transformation frequence was also effected. In this study, fungal transformation was carried out by bypassing the protoplast isolation step, changing enzymes, such as hemicellulase and celluclast, and decreasing the culturing time for the increment of the transformation efficiency. 83 transformants/10ug of DNA with hemicellulase were obtained, compared with less than 10 transformants with novozyme234 and celluclast.

  • PDF

Monascus sp. 의 적색색소생성에 대한 용존산소량의 영향

  • Park, No-Hwan;Seong, Mun-Su;O, Yeong-Suk;Jeong, Uk-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.267-270
    • /
    • 2000
  • In general, pigment production can be influenced by the medium composition, pH and physical factors such as aeration, agitation, and visible light. The influence of gaseous environments on the pigment production by Monascus purpureus ATCC 16365 was investigated by controlling the DO (dissolved oxygen) concentration through aeration and agitation. When the DO concentration was controlled below 20%, the production of red pigment significantly increased whereas the biomass production decreased. Therefore, the dissolved oxygen concentration could significantly affect the biosynthesis of red pigment as a secondary metabolite by a wild-type filamentous fungus under the anaerobic condition. The results indicate a high potential of enhancing the productivity of the red pigment as a secondary metabolite through controlling the DO concentration.

  • PDF

Improved mevinolic acid (MA) production by the immobilized cells, and the establishment of on-line measurement system for fermentation parameters using vent gas analyzer

  • Song, Seong-Gi;Kim, Gyeong-Hui;Kim, Myeong-Jin;Lee, Sang-Jong;Jang, Yong-Geun;Jeong, Yeon-Ho;Jeong, Yong-Seop;Jeon, Gye-Taek
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.223-227
    • /
    • 2003
  • Mevinolic acid (MA), a secondary metabolite produced by a filamentous fungus Aspergillus terreus, is acidic form of lovastatin which has been identified as a powerful cholesterol-lowering agent in humans. When immobilized cell culture was performed, MA production was about 5.3-fold higher than the parallel suspended cell culture. Although the immobilized cells proliferated slowly during exponential in comparison with the suspended cells, oxygen uptake rate and oxygen mass transfer coefficient of the immobilized cell culture were about 1.3- and 2.5- fold higher respectively than those of the parallel suspended cell culture. From these results, it was concluded that MA biosynthesis was closely dependent on the cell growth rate, morphology and oxygen availability.

  • PDF

Structure elucidation of 11-epiterpestacin glycoside (11-ETG) isolated from Bipolaris sorokiniana NSDR-011

  • Lim, Chi-Hwan;Nihashi, Youichirou
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.79-82
    • /
    • 2018
  • An ${\alpha}-{\text\tiny{D}}-glucoside$ of sesterterpene, 11-epiterpestacin, was isolated from the culture of a filamentous fungus Bipolaris sorokiniana NSDR-011. The structure was elucidated by chemical studies and spectroscopic methods including NMR and ESI-MS. 11-ETG (1) named arbitrarily did not inhibit the root growth of Italian ryegrass seedlings even at the level of 200 ppm, while its aglycone 11-ET (2) completely inhibited root growth at level of 100 ppm.

Studies on Microbial Transformation of Meloxicam by Fungi

  • Shyam Prasad, G.;Girisham, S.;Reddy, S.M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.922-931
    • /
    • 2009
  • Screening-scale studies were performed with 26 fungal cultures for their ability to transform the anti-inflammatory drug meloxicam. Among the different fungi screened, a filamentous fungus, Cunninghamella blakesleeana NCIM 687, transformed meloxicam to three metabolites in significant quantities. The transformation of meloxicam was confirmed by high-performance liquid chromatography (HPLC). Based on the liquid chromatography-tandem mass spectrometry (LC-MS/MS) data, two metabolites were predicted to be 5-hydroxymethyl meloxicam and 5-carboxy meloxicam, the major mammalian metabolites reported previously. A new metabolite was produced, which is not detected in mammalian systems. Glucose medium, pH of 6.0, temperature of $27^{\circ}C$, 5-day incubation period, dimethylformamide as solvent, and glucose concentration of 2.0% were found to be suitable for maximum transformation of meloxicam when studied separately. It is concluded that C. blakesleeana can be employed for biotransformation of drugs for production of novel metabolites.

Nitrogen Source Investigation for Economical Production of Cellulolytic Enzymes

  • Li, Hong-Xian;Kim, Gi-Wan;Lee, Young-Bok;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.250-255
    • /
    • 2005
  • Trichoderma inhamatum KSJ1, a filamentous fungus, isolated from rotten wood showed high ability to hydrolysis of cellulosic materials. Enzyme productivity by strain KSJ1 was high in the cultivation using carbon sources such as cellulosic materials and lignocellulosic wastes as rice straw and paper waste. In previous study peptone was one of optimum organic nitrogen sources in producing cellulases for saccharification of food wastes. However, it was too expensive using peptone as organic nitrogen source, so, in this study, soybean and yeast were applicated to substitute peptone. Yeast showed producing high enzyme activity, so it was estimated that yeast is available in producing cellulase using Trichoderma inhamatum KSJ1 at industrial Production.

  • PDF

A Case of Aspergillosis on Vocal Cord Mimicking Malignancy (성문암으로 오인되기 쉬운 원발성 후두 아스페르길루스증 1예)

  • Lee, Hyun Min;Jung, Kwang Tae;Kim, Jung Suk;Han, Ju Hee
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.24 no.2
    • /
    • pp.125-127
    • /
    • 2013
  • Infection by aspergillus, which is a kind of mold, or a filamentous fungus, occurs rarely in larynx. Furthermore, primary laryngeal aspergillosis without any other airway tract extension and without any generalized immune deficit is extremely rare. We present a case of primary aspergillosis on vocal cord in a 72-year-old male who had no history of immune deficiency, voice abuse or steroid use.

  • PDF

Development of Non-protoplast transformation System in Aspergillus oryzae

  • Lee Jae Won;Hahm Young Tae
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.85-91
    • /
    • 2000
  • Aspergillus oryzae is a filamentous fungus classified in the group Aspergillaceae Ascomycetes. It is an important microorganism for industrial production of enzymes and fermented food productions. It secrets large quantities of proteins or enzymes into the culture medium which makes this organism appealing for the production of heterologous proteins. Recently Electric field-mediated transformation method, electroporation, has been applied to fungal transformation. In this study, fungal transformation was carried out by bypassing the protoplast isolation step, decreasing the culturing time and non-protoplast transformation for the increment of transformation efficiency. Transformants were obtained with electroporation in optimal condition 2,500 voltage, 1,540 ohm and 0.50 capacitance. More than 1,000 transform ants were obtained with 6-10 hrs cultured mycelia without enzyme treatment, called non-protoplast transformation.

  • PDF

Functional Roles of a Putative B' Delta Regulatory Subunit and a Catalytic Subunit of Protein Phosphatase 2A in the Cereal Pathogen Fusarium graminearum

  • Kim, Hee-Kyoung;Yun, Sung-Hwan
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.259-269
    • /
    • 2012
  • Protein phosphatase 2A (PP2A), a family of serine/threonine protein phosphatases, plays an important role in balancing the phosphorylation status of cellular proteins for regulating diverse biological functions in eukaryotic organisms. Despite intensive studies in mammals, limited information on its role is available in filamentous fungi. Here, we investigated the functional roles of genes for a putative B' delta regulatory subunit (FgPP2AR) and a catalytic subunit (FgPP2AC) of PP2A in a filamentous ascomycete, Fusarium graminearum. Molecular characterization of an insertional mutant of this plant pathogenic fungus allowed us to identify the roles of FgPP2AR. Targeted gene replacement and complementation analyses demonstrated that the deletion of FgPP2AR, which was constitutively expressed in all growth stages, caused drastic changes in hyphal growth, conidia morphology/germination, gene expression for mycotoxin production, sexual development and pathogenicity. In particular, overproduction of aberrant cylindrical-shaped conidia is suggestive of arthroconidial induction in the ${\Delta}FgPP2AR$ strain, which has never been described in F. graminearum. In contrast, the ${\Delta}FgPP2AC$ strain was not significantly different from its wild-type progenitor in conidiation, trichothecene gene expression, and pathogenicity; however, it showed reduced hyphal growth and no perithecial formation. The double-deletion ${\Delta}FgPP2AR;{\Delta}FgPP2AC$ strain had more severe defects than single-deletion strains in all examined phenotypes. Taken together, our results indicate that both the putative regulatory and catalytic subunits of PP2A are involved in various cellular processes for fungal development in F. graminearum.