Browse > Article

Studies on Microbial Transformation of Meloxicam by Fungi  

Shyam Prasad, G. (Department of Microbiology, Kakatiya University)
Girisham, S. (Department of Microbiology, Kakatiya University)
Reddy, S.M. (Department of Microbiology, Kakatiya University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.9, 2009 , pp. 922-931 More about this Journal
Abstract
Screening-scale studies were performed with 26 fungal cultures for their ability to transform the anti-inflammatory drug meloxicam. Among the different fungi screened, a filamentous fungus, Cunninghamella blakesleeana NCIM 687, transformed meloxicam to three metabolites in significant quantities. The transformation of meloxicam was confirmed by high-performance liquid chromatography (HPLC). Based on the liquid chromatography-tandem mass spectrometry (LC-MS/MS) data, two metabolites were predicted to be 5-hydroxymethyl meloxicam and 5-carboxy meloxicam, the major mammalian metabolites reported previously. A new metabolite was produced, which is not detected in mammalian systems. Glucose medium, pH of 6.0, temperature of $27^{\circ}C$, 5-day incubation period, dimethylformamide as solvent, and glucose concentration of 2.0% were found to be suitable for maximum transformation of meloxicam when studied separately. It is concluded that C. blakesleeana can be employed for biotransformation of drugs for production of novel metabolites.
Keywords
Biotransformation; fungi; meloxicam; 5-hydroxymethyl meloxicam; 5-carboxy meloxicam; HPLC; LC-MS/MS;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Mobic ${\circledR}$. Product Information. Boehringer Ingelheim Taiwan Ltd., Taiwan
2 Chesne, C., C. Guyomard, A. Guillouzo, J. Schmid, E. Ludwig, and T. Sauter. 1998. Metabolism of meloxicam in human liver involves cytochrome P4502C9 and 3A4. Xenobiotica 28: 1-13   DOI   ScienceOn
3 Guruswamy, S., V. Kumar, and D. N. Mishra. 2006. Preparation and evaluation of solid dispersion of meloxicam with skimmed milk. Pharm. Soc. Japan 126: 93-97   DOI   ScienceOn
4 Ibrahim, A. R., A. M. Galal, M. S. Ahmed, and G. S. Mossa. 2003. O-Demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans. Chem. Pharm. Bull. 51: 203-206   DOI   ScienceOn
5 Kreiner, M., G. Braunegg, A. de Raadt, H. Griengl, I. Kopper, M. Petsch, et al. 1996. Stereospecific biohydroxylations of protected carboxylic acids with Cunninghamella blakesleeana. Appl. Environ. Microbiol. 62: 2603-2609   PUBMED   ScienceOn
6 Pairet, M. and G. Engelhardt. 1996. Differential inhibition of COX-1 and COX-2 in vitro and pharmacological profile in vivo of NSAIDs, pp. 103-119 In J. Vane, J. Botting, and R. Botting (eds), Improved Non-steroid Anti-inflammatory Drugs: COX-2 Enzyme Inhibitors. Kluwer Academic Publishers, London
7 Azerad, R. 1999. Microbial models for drug metabolism. Adv. Biochem. Eng. Biotechnol. 63: 169-218   DOI   PUBMED   ScienceOn
8 Grifoll, M., M. Casellas, J. M. Bayona, and A. M. Solanas. 1992. Isolation and characterization of a fluorine degrading bacterium: Identification and ring oxidation and ring fission products. Appl. Environ. Microbiol. 58: 2910-2917   PUBMED   ScienceOn
9 Henderson, A. L., T. C. Schmitt, T. M. Heinze, and C. E. Cerniglia. 1997. Reduction of malachite green to leucomalachite green by intestinal bacteria. Appl. Environ. Microbiol. 63: 4099-4101   PUBMED   ScienceOn
10 Faramarzi, M. A., M. T. Yazdi, M. Amini, G. Zarrini, and A. Shafiee. 2003. Microbial hydroxylation of progesterone with Acremonium strictum. FEMS Microbiol Lett. 222: 183-186   DOI   ScienceOn
11 Churchill, L., A. Graham, C. K. Shih, D. Pauletti, P. R. Farina, and P. M. Grob. 1996. Selective inhibition of human cyclooxygenase 2 by meloxicam. Inflam. Pharm. 4: 125-135   DOI
12 Busch, U., J. Schmid, G. Heinzel, and H. Schmaus. 1998. Pharmacokinetics of meloxicam in animal with relevance to humans. Drug Metab. Dispos. 26: 576-584   ScienceOn
13 Elbary, A. A., N. Foda, and M. Elkhateeb. 2001. Reversed phase liquid chromatographic determination of meloxicam in human plasma and its pharmacokinetic application. Anal. Lett. 34: 1175-1187   DOI   ScienceOn
14 Alarcon, J., J. B. Alderete, S. Aguila, and M. Peter. 2005. Regio and stereo selective hydroxylation of A-Agarofuran by biotransformation of Rhizopus nigricans. J. Chil. Chem. Soc. 50: 715-718   DOI
15 Chatterjee, T. and D. K. Bhattacharyya. 2001. Biotransformation of limonene by Pseudomonas putida. Appl. Microbiol. Biotechnol. 55: 541-546   DOI   ScienceOn
16 Harshad, R. V. and R. H. Mohan. 2003. Biotransformation of (L)-citronellal to (L)-citronellol by free and immobilized Rhodotorula minuta. Electr. J. Biotechnol. 6: 90-103
17 Hanson, R. L., J. A. Matson, D. B. Brzozowski, T. L. Laporte, D. M. Springer, and R. N. Patel. 2002. Hydroxylation of mutilin by Streptomyces griseus and Cunninghamella echinulata. Org. Proc. Res. Dev. 6: 482-487   DOI   ScienceOn
18 Medeiros, S., M. A. Avery, B. Avery, S. G. F. Leite, A. C. C. Freitas, and J. S. Williamson. 2002. Biotransformation of 10- deoxoartemisinin to its 7$\beta$-hydroxy derivative by Mucor ramannianus. Biotechnol. Lett. 24: 937-941   DOI   ScienceOn
19 Faramarzi, M. A., M. T. Yazdi, H. Jahandar, M. Amini, and H. R. Monsef-Esfahani. 2006. Studies on the microbial transformation of androst-1, 4-dien-3, 17-dione with Acremonium strictum. J. Ind. Microbiol. Biotechnol. 33: 725-733   DOI   ScienceOn
20 Cha, C. J., D. R. Doerge, and C. E. Cerniglia. 2001. Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 67: 4358-4360   DOI   ScienceOn
21 Breiter, S., D. Schlosser, D. Weiss, and H.P. Schmouder. 1995. Microbial hydroxylation of androst-1, 4-dien-3, 17-dione. Nat. Prod. Lett. 6: 7-14   DOI
22 Parshikov, I. A., J. P. Freeman, A. J. Williams, J. D. Moody, and J. B. Sutherland. 1999. Biotransformation of N-acetylphenothiazine by fungi. Appl. Microbiol. Biotechnol. 52: 553-557   DOI   ScienceOn
23 Parshikov, I. A., K. M. Muraleedharan, M. A. Avery, and J. S. Williamson. 2004. Transformation of artemisinin by Cunninghamella elegans. Appl. Microbiol. Biotechnol. 64: 782-786   DOI   ScienceOn
24 Hawari, J., A. Halasz, S. Beaudet, L. Paquet, G. Ampleman, and S. Thiboutot. 1999. Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl. Environ. Microbiol. 65: 2977-2986   PUBMED   ScienceOn
25 He, A. and J. P. Rosazza. 2003. Microbial transformations of Snaproxen by Aspergillus niger ATCC 9142. Pharmazie 58: 420-422   PUBMED   ScienceOn
26 Moody, J. D., D. Zhang, T. M. Heinze, and C. E. Cerniglia. 2000. Transformation of amoxapine by Cunninghamella elegans. Appl. Environ. Microbiol. 66: 3646-3649   DOI   ScienceOn
27 Dai, Y. J., S. Yuan, F. Ge, T. Chen, S. C. Xu, and J. P. Ni. 2006. Microbial hydroxylation of imidacloprid for the synthesis of highly insecticidal olefin imidacloprid. Appl. Microbiol. Biotechnol. 71: 927-934   DOI   ScienceOn
28 Engelhardt, G., R. B$\ddot{o}$gel, C. H. R. Schnitzler, and R. Utzmann. 1996. Meloxicam: Influence on arachidonic acid metabolism. I. In vitro findings. Biochem. Pharmacol. 51: 21-28   DOI   PUBMED   ScienceOn
29 Mitsukura, K., Y. Kondo, T. Yoshida, and T. Nagasawa. 2006. Regioselective hydroxylation of adamantane by Streptomyces griseoplanus cells. Appl. Microbiol. Biotechnol. 71: 502-504   DOI   ScienceOn
30 Miyazawa, M., K. Takahashi, and H. Araki. 2006. Biotransformation of daidzein ditiglate by microorganisms. Nat. Prod. Res. 20: 311-315   DOI   ScienceOn