• 제목/요약/키워드: field-emission scanning electron microscopy

검색결과 680건 처리시간 0.034초

탄소나노튜브를 이용한 텅스텐 나노팁 전계방출기 제작 (Fabrication of a nano-sized conical-type tungsten field-emitter based on carbon nanotubes)

  • 박창균;김종필;김영광;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1220-1221
    • /
    • 2008
  • Submicron-sized conical-type tungsten(W) field-emitters based on carbon nanotubes(CNTs) are fabricated with the configuration of CNTs/catalyst(Ni)/buffer(Al/Ni/TiN)/W-tip. This study focuses on elucidating how the Al/Ni/TiN stacked buffer layer affects the structural properties of CNTs and the electron-emission characteristics of CNT-emitters. Field-emission scanning electron microscopy(FESEM), high-resolution transmission electron microscopy(HRTEM), and x-ray photoelectron spectroscopy(XPS) are used to monitor the nanostructures, surface morphologies, chemical bonds of all the catalysts and CNTs grown. The crystalline structure of CNTs is also characterized by Raman spectroscopy. Furthermore, the measurement of field-emission characteristics for the field-emitters fabricated shows that the emitter using the Al/Ni/TiN stacked buffer reveals the excellent performances.

  • PDF

Simple Preparation of One-dimensional Metal Selenide Nanomaterials Using Anodic Aluminum Oxide Template

  • Piao, Yuanzhe
    • Journal of Electrochemical Science and Technology
    • /
    • 제3권1호
    • /
    • pp.35-43
    • /
    • 2012
  • Highly ordered and perforated anodic aluminum oxide membranes were prepared by anodic oxidation and subsequent removal of the barrier layer. By using these homemade anodic aluminum oxide membranes as templates, metal selenide nanowires and nanotubes were synthesized. The structure and composition of these one-dimensional nanomaterials were studied by field emission scanning electron microscopy as well as transmission electron microscopy and energy dispersive X-ray spectroscopy. The growth process of metal selenide inside anodic aluminum oxide channel was traced by investigating the series of samples using scanning electron microscopy after reacting for different times. Straight and dense copper selenide and silver selenide nanowires with a uniform diameter were successfully prepared. In case of nickel selenide, nanotubes were preferentially formed. Phase and crystallinity of the nanostructured materials were also investigated.

Fluorescent Silk Fibroin Nanoparticles Prepared Using a Reverse Microemulsion

  • Myung, Seung-Jun;Kim, Hun-Sik;Kim, Yeseul;Chen, Peng;Jin, Hyoung-Joon
    • Macromolecular Research
    • /
    • 제16권7호
    • /
    • pp.604-608
    • /
    • 2008
  • Color dye-doped silk fibroin nanoparticles were successfully fabricated using a microemulsion method. An aqueous silk fibroin solution was prepared by dissolving cocoons (Bombyx mori) in a concentrated lithium bromide solution followed by dialysis. A color dye solution was also mixed with the aqueous silk fibroin solution. The surfactants used for the microemulsion were then removed by methanol and ethanol, yielding color dye-doped silk fibroin nanoparticles, approximately 167 nm in diameter. The secondary structure of the nanoparticles showed a $\beta$-sheet conformation, as characterized by Fourier transform infrared spectroscopy. The morphology of the nanoparticles was determined by field emission scanning electron microscopy, transmission electron microscopy and atomic force microscopy, and their size and size distribution were measured by dynamic light scattering. The color dye-doped silk fibroin nanoparticles were examined by confocal laser scanning microscopy.

Field Emission Enhancement by Electric Field Activation in Screen-printed Carbon Nanotube Film

  • Lee, Hyeon-Jae;Lee, Yang-Doo;Cho, Woo-Sung;Kim, Jai-Kyeong;Hwang, Sung-Woo;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • 제6권4호
    • /
    • pp.45-48
    • /
    • 2005
  • By applying a critical field treatment instead of the conventional surface treatments such as soft rubber roller, ion beam irradiation, adhesive taping, and laser irradiation, electron emission properties of screen-printed carbon nanotubes (CNTs) were enhanced and investigated based on the emission current-voltage characteristics through scanning electron microscopy. After nanotube emitters were activated at the applied electric-field of 2.5 V/um, the electron emission current density with good uniform emission sites reached the value of 2.13 mA/$cm^2$ , which is 400 times higher than that of the untreated sample, and the turn-on voltage decreased markedly from 700 to 460 V. In addition, enhancement of the alignment of CNTs to the vertical direction was observed.

In-situ rf treatment of multiwall carbon nanotube with various post techniques for enhanced field emission

  • Ahn, Kyoung-Soo;Kim, Jun-Sik;Kim, Ji-Hoon;Kim, Chae-Ok;Hong, Jin-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.859-862
    • /
    • 2003
  • Well-aligned multiwall carbon nanotubes (MWCNTs) were prepared at low temperature of 400 $^{\circ}C$ by utilizing a radio frequency plasma-enhanced chemical vapor deposition (rf-PECVD) system. The MWCNTs were treated by an external rf plasma source and an ultra-violet laser in order to modify structural defect of carbon nanotube and to ablate possible contamination on carbon nanotube surface. Structural properties of carbon nanotubes were investigated by using a scanning electron microscopy (SEM), Raman spectroscopy, Fourier transformer Infrared spectroscopy (FTIR) and transmission electron microscope (TEM). In addition, the emission properties of the MWNTs were measured for the application of field emission display (FED) in near future. Various post treatments were found to improve the field emission property of carbon nanotubes.

  • PDF

기판 바이어스에 따른 탄소 나노튜브의 구조적 물성 (Structural properties of carbon nanotubes: The effect of substrate-biasing)

  • 박창균;윤성준;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.36-37
    • /
    • 2006
  • Both negative and positive substrate bias effects on the structural properties and field-emission characteristics are investigated. carbon nanotubes (CNTs) are grown on Ni catalysts employing an inductively-coupled plasma chemical vapor deposition (ICP-CVD) method. Characterization using various techniques, such as field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Auger spectroscopy (AES), and Raman spectroscopy, shows that the physical dimension as well as the crystal quality of CNTs grown can be changed and controlled by the application of substrate bias during CNT growth. It is for the first time observed that the prevailing growth mechanism of CNTs, which is either due to tip-driven growth or based-on-catalyst growth, may be influenced by substrate biasing. It is also seen that negative biasing would be more effectively role in the vertical-alignment of CNTs compared to positive biasing. However, the CNTs grown under the positively bias condition display much better electron emission capabilities than those grown under negative bias or without bias. The reasons for all the measured data regarding the structural properties of CNTs are discussed to confirm the correlation with the observed field-emissive properties.

  • PDF

Characterizations of Highly Ordered TiO2 Nanotube Arrays Obtained by Anodic Oxidation

  • Park, Hun;Kim, Ho-Gi;Choi, Won-Youl
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권3호
    • /
    • pp.112-115
    • /
    • 2010
  • This paper provides the properties of $TiO_2$ nanotube arrays which are fabricated by anodic oxidation of Ti metal. Highly ordered $TiO_2$ nanotube arrays could be obtained by anodic oxidation of Ti foil in $0.3\;wt{\cdot}%$ $NH_4F$ contained ethylene glycol solution at $30^{\circ}C$. The length, pore size, wall thickness, tube diameter etc. of $TiO_2$ nanotube arrays were analyzed by field emission scanning electron microscopy. Their crystal properties were studied by field emission transmission electron microscopy and X-ray photoelectron spectroscopy.

마이크로에멀젼 방법에 의해 제조된 Ag/TiO2의 Reactive Orange 16 제거에 관한 연구 (Removal of Reactive Orange 16 by the Ag/TiO2 Composite Produced from Micro-emulsion Method)

  • 이시진
    • 한국지반환경공학회 논문집
    • /
    • 제20권11호
    • /
    • pp.5-10
    • /
    • 2019
  • 본 연구에서는 장파장에서 감응하는 광촉매를 개발하기 위하여 상용화된 $TiO_2$에 Ag를 도핑하여 제조하였으며 광촉매 효율을 향상시키기 위하여 귀금속의 분산을 증대시키는 마이크로에멀젼 방법을 이용하였다. 제조된 $Ag/TiO_2$의 물리적 특성은 SEM(Scanning Electron Microscopy), FE-TEM(Field Emission Transmission Electron Microscopy), DRS(Diffuse Reflectance Spectroscopy)를 통해 분석하였다. RO 16(Reactive Orange 16)에 대한 광촉매의 제거 효율은 25ppm의 RO 16을 대상으로 UV-A 영역(365nm)에서 수행하였다. Ag의 도핑방법에 의한 광촉매 효율을 비교하기 위해 볼밀링 및 딥코팅 방법으로 제조하여 광촉매 효율을 분석하였으며 광촉매 효율에 대한 Ag 및 계면활성제 함량에 대한 최적화를 진행하였다. 도핑방법에 따른 RO 16 제거효율 분석 결과, 마이크로에멀젼 방법으로 제조한 $Ag/TiO_2$의 RO 16 제거효율이 가장 높았으며 Ag 함량 2wt%, 계면활성제 0.5g에서 가장 높은 제거효율을 보였다.

Hot-filament 플라즈마화학기상증착법 이용한 패턴된 DLC층 위에 탄소나노튜브의 선택적 배열

  • 최은창;박용섭;홍병유
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.293-293
    • /
    • 2010
  • Carbon nanotubes (CNTs) have attracted considerable attention as possible routes to device miniaturization due to their excellent mechanical, thermal, and electronic properties. These properties show great potential for devices such as field emission displays, CNT based transistors, and bio-sensors. The metals such as nickel, cobalt, gold, iron, platinum, and palladium are used as the catalysts for the CNT growth. In this study, diamond-like carbon (DLC) was used for CNT growth as a nonmetallic catalyst layer. DLC films were deposited by a radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-PECVD) method with a mixture of methane and hydrogen gases. CNTs were synthesized by a hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH3) as a pretreatment gas and acetylene (C2H2) as a carbon source gas. The grown CNTs and the pretreated DLC filmswere observed using field emission scanning electron microscopy (FE-SEM) measurement, and the structure of the grown CNTs was analyzed by high resolution transmission scanning electron microscopy (HR-TEM). Also, using energy dispersive spectroscopy (EDS) measurement, we confirmed that only the carbon component remained on the substrate.

  • PDF