• Title/Summary/Keyword: field plate load

Search Result 200, Processing Time 0.035 seconds

Seismic upgrading of reinforced concrete frames with steel plate shear walls

  • Korkmaz, Hasan H.;Ecemis, Ali S.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.473-484
    • /
    • 2017
  • The objective of this paper is to report on a study of the use of unstiffened thin steel plate shear walls (SPSWs) for the seismic performance improvement of reinforced concrete frames with deficient lateral rigidity. The behaviour of reinforced concrete frames during seismic activities was rehabilitated with an alternative and occupant-friendly retrofitting scheme. The study involved tests of eight 1/3 scale, one bay, two storey test specimens under cyclic quasi-static lateral loadings. The first specimen, tested in previous test program, was a reference specimen, and in seven other specimens, steel infill plates were used to replace the conventional infill brick or the concrete panels. The identification of the load-deformation characteristics, the determination of the level of improvement in the overall strength, and the elastic post-buckling stiffness were the main issues investigated during the quasi-static test program. With the introduction of the SPSWs, it was observed that the strength, stiffness and energy absorption capacities were significantly improved. It was also observed that the experimental hysteresis curves were stable, and the composite systems showed excellent energy dissipation capacities due to the formation of a diagonal tension field action along with a diagonal compression buckling of the infill plates.

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

Observation Studies on Field Operation of a Exhausted Heat Recovery System for a 300 kW Class Small Gas Engine Cogeneration System (300 kW급 소형 열병합발전기용 배열회수 시스템의 실증운전 성능분석에 관한 연구)

  • Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Ra, Ho-Sang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.4
    • /
    • pp.248-257
    • /
    • 2010
  • An exhausted heat recovery system for a small gas engine cogeneration plant was investigated. The system was designed and built in a 300 kW class cogeneration demonstrative system. The basic performance was tested depending on load variation, and installed to a field site as a bottoming heat and power supply system. The exhaust gas heat exchangers (EGHXs) in shell-and-tube type and shell-and-plate type were tested. The entire efficiency of the cogeneration system was estimated between 85 to 90% under the 100% load condition, of which trend appears higher in summer due to the less thermal loss than in winter. Power generation efficiency and thermal efficiency was measured in a range of 31~33% and 54~57%, respectively.

A Study on the Structural Standard of the Tube and Coupler Scaffold (단관비계의 구조규격에 관한 연구)

  • 이영섭
    • Journal of the Korean Society of Safety
    • /
    • v.5 no.2
    • /
    • pp.66-75
    • /
    • 1990
  • This study is conducted to establish the structural standard of tube and coupler scaffold which is suitable for our present stuation through the comparison analysis for domestic and foreign standards as well as measurement of field survey. The results of this study are as follows : 1) The load is classified by three categories, light-duty(equal and lower than 150kg/m$^2$), medium-duty(150-250 kg/m$^2$), heavy-duty(250-350kg/m$^2$), and the equivalent horizontal length of side posts is each, 1.5-1.8m, 1.2-1.5m, equal and lower than 1.2m, and the equivalent horizontal length between front and rear posts is each 1.2-1.5m, 0.9-1.2m, equal and lower thatn 0.9m, in accordance with the load classification. 2) The height between upper and lower runner is equal and lower than 1.5m, and the brace across the width of scaffold should be installed within 15m in horizontal direction at 45 degree angle. 3) The entire scaffold should be securely tied to the wall of permanent structure with uslng anchor and bolt at intervals not to exceed 6m in case of non-connection and 4.5m in case of connection in both horizontal and vertical direction. 4) The post should be installed on the sound foundation tied to lumber footing with using base plate, and standard platform plank should be produced in the factory and widely used in the construction field.

  • PDF

Thermal-fluid-structure coupling analysis for plate-type fuel assembly under irradiation. Part-I numerical methodology

  • Li, Yuanming;Yuan, Pan;Ren, Quan-yao;Su, Guanghui;Yu, Hongxing;Wang, Haoyu;Zheng, Meiyin;Wu, Yingwei;Ding, Shurong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1540-1555
    • /
    • 2021
  • The plate-type fuel assembly adopted in nuclear research reactor suffers from complicated effect induced by non-uniform irradiation, which might affect its stress conditions, mechanical behavior and thermal-hydraulic performance. A reliable numerical method is of great importance to reveal the complex evolution of mechanical deformation, flow redistribution and temperature field for the plate-type fuel assembly under non-uniform irradiation. This paper is the first part of a two-part study developing the numerical methodology for the thermal-fluid-structure coupling behaviors of plate-type fuel assembly under irradiation. In this paper, the thermal-fluid-structure coupling methodology has been developed for plate-type fuel assembly under non-uniform irradiation condition by exchanging thermal-hydraulic and mechanical deformation parameters between Finite Element Model (FEM) software and Computational Fluid Dynamic (CFD) software with Mesh-based parallel Code Coupling Interface (MpCCI), which has been validated with experimental results. Based on the established methodology, the effects of non-uniform irradiation and fluid were discussed, which demonstrated that the maximum mechanical deformation with irradiation was dozens of times larger than that without irradiation and the hydraulic load on fuel plates due to differential pressure played a dominant role in the mechanical deformation.

Test and Development of Fatigue Assesement System for Steel Railway Bridges (강철도교 피로평가 시스템 개발 및 검증)

  • Kyung Kab-Soo;Choi Il-Yoon;Lee Jun-Seok;Lee Hee-Hyun;Park Jin-Woo
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.185-190
    • /
    • 2005
  • In order to evaluate that factors such as span length, member type and train loading affected on fatigue of steel railway bridges, in this paper, a series of field tests were carried out for some plate girder bridges. From the result estimated by rainflow counting method to analyze real strain-time curve obtained from the field test, it was known that the fatigue effect is more significant in the bridges having short span length and the secondary members regardless of train load types.

  • PDF

Minimum Thickness of Temporary Steel Plate to Prevent Pile Driver Overturning (항타기 전도예방을 위한 임시 철판의 두께에 관한 연구)

  • Bang, Daepyung;Park, Jongyil;Kee, Junghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.11
    • /
    • pp.5-10
    • /
    • 2020
  • Although pile driver overturning accidents at construction site are not frequent, most leads to serious disasters. The main cause of accidents is uneven settlement of the ground. To prevent this, related guidelines such as KOSHA-C-101-2014, KOSH-A-GUIDE-71-2012, Occupational Safety and Health Standards, and NCS stipulate the installation of steel plates over ground. However, since the required steel plate thickness considering the self-weight of pile drivers and the underlying ground condition is not quantitatively presented, it is randomly applied in the field. In this study, the required minimum steel plate thickness was analyzed based on a numerical analysis (Plaxis 2D). Settlements and soil failure were calculated according to the different type of soils (sand, clay), load distribution and steel plate thickness (10mm, 20mm, 30mm, 40mm). Under all conditions, 10mm steel plate causes soil collapse. From thickness 20mm, the ground uneven subsidence is within 2° of the allowable leader angle.

A four variable trigonometric integral plate theory for hygro-thermo-mechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation

  • Tounsi, Abdelouahed;Al-Dulaijan, S.U.;Al-Osta, Mohammed A.;Chikh, Abdelbaki;Al-Zahrani, M.M.;Sharif, Alfarabi;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.511-524
    • /
    • 2020
  • In this research, a simple four-variable trigonometric integral shear deformation model is proposed for the static behavior of advanced functionally graded (AFG) ceramic-metal plates supported by a two-parameter elastic foundation and subjected to a nonlinear hygro-thermo-mechanical load. The elastic properties, including both the thermal expansion and moisture coefficients of the plate, are also supposed to be varied within thickness direction by following a power law distribution in terms of volume fractions of the components of the material. The interest of the current theory is seen in its kinematics that use only four independent unknowns, while first-order plate theory and other higher-order plate theories require at least five unknowns. The "in-plane displacement field" of the proposed theory utilizes cosine functions in terms of thickness coordinates to calculate out-of-plane shear deformations. The vertical displacement includes flexural and shear components. The elastic foundation is introduced in mathematical modeling as a two-parameter Winkler-Pasternak foundation. The virtual displacement principle is applied to obtain the basic equations and a Navier solution technique is used to determine an analytical solution. The numerical results predicted by the proposed formulation are compared with results already published in the literature to demonstrate the accuracy and efficiency of the proposed theory. The influences of "moisture concentration", temperature, stiffness of foundation, shear deformation, geometric ratios and volume fraction variation on the mechanical behavior of AFG plates are examined and discussed in detail.

Vibroacoustic response of thin power law indexed functionally graded plates

  • Baij Nath Singh;Vinayak Ranjan;R.N. Hota
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.299-318
    • /
    • 2024
  • The main objective of this paper is to compute the far-field acoustic radiation (sound radiation) of functionally graded plates (FGM) loaded by sinusoidally varying point load subjected to the arbitrary boundary condition is carried out. The governing differential equations for thin functionally graded plates (FGM) are derived using classical plate theory (CPT) and Rayleigh integral using the elemental radiator approach. Four cases, segregated on power-law index k=0,1,5,10, are studied. A novel approach is illustrated to compute sound fields of vibrating FGM plates using the physical neutral surface with an elemental radiator approach. The material properties of the FGM plate for all cases are calculated considering the power law indexes. An in-house MATLAB code is written to compute the natural frequencies, normal surface velocities, and sound radiation fields are analytically calculated using semi-analytical formulation. Ansys is used to validate the computed sound power level. The parametric effects of the power law index, modulus ratios, different constituent of FGM plates, boundary conditions, damping loss factor on the sound power level, and radiation efficiency is illustrated. This work is the benchmark approach that clearly explains how to calculate acoustic fields using a solid layered FGM model in ANSYS ACT. It shows that it is possible to asymptotically stabilize the structure by controlling the intermittent layers' stiffness. It is found that sound fields radiated by the elemental radiators approach in MATLAB, ANSYS and literatures are in good agreement. The main novelty of this research is that the FGM plate is analyzed in the low-frequency range, where the stiffness-controlled region governs the whole analysis. It is concluded that a clamped mono-ceramic FGM plate radiates a lesser sound power level and higher radiation efficiency than a mono-metallic or metal-rich FGM plate due to higher stiffness. It is found that change in damping loss factor does not affect the same constituents of FGM plates but has significant effects on the different constituents of FGM plates.

Estimation of local ice load by analyzing shear strain data from the IBRV ARAON's 2016 Arctic voyage

  • Jeon, Mincheul;Choi, Kyungsik;Min, Jung Ki;Ha, Jung Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.421-425
    • /
    • 2018
  • The icebreaking research vessel ARAON performed ice field tests during her 2016 Arctic voyage. The ship is subjected to ice loads through ice-ship interaction processes. Local ice load acting on ARAON's bow section was measured by using stain gauges installed on the inner hull plates and transverse frames of bow section. In this paper the local ice loads at transverse frames estimated from shear strain data were compared to ice loads from hull plate pressures by using the influence coefficient method. In addition to the analysis of local ice loads, the characteristics of peak ice loads with the ship speed is also discussed. It is recommended that the local ice loads estimated by calculating shear forces acting on transverse frames may be useful in estimating local ice loads on the hull of ship.