• Title/Summary/Keyword: field of energy

Search Result 5,815, Processing Time 0.03 seconds

Rod Energy Ratio Measurement of SPT (표준관입시험의 동적효율 측정)

  • Lee, Ho-Chun;Kim, Byeong-Il;Park, Yong-Won
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.169-182
    • /
    • 1997
  • It is known that some amount of loss in impact energy takes place due to some limitations and problems during the performance of the field SPT. Actual energy level tractsferred to the rod should be measured to correct the SPT-N values tested in the field In this paper, the ratio of energy transferred to the rod through the anvil to impact energy is measured by using sharpy impact test equipment and also analysed by using GRL-WEAP This result is certified and compared with that of field SPT As the results of this study, the average rod energy ratio of the R-P hammer and the Trip hammer is calculated at 0.726 and 0.728 respectively, but it is suggested that 0.72 should be used. By using the hammer energy ratio 64.2% and 75.0% obtained from field measurement, the average energy ratio of the SPT for the R-P hammer is calculated at 46.7% and 54.5% for the Trip hammer.

  • PDF

Development of 500kW Tidal Current Energy Converter and Uldolmok Field Test (500kW 조류력 발전장치 개발 및 울돌목 실증시험)

  • Sim, Wooseung;Choe, Ickhung;Lee, Kyuchan;Kim, Haiwook;Bae, Jonggug;Min, Kehsik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.159.2-159.2
    • /
    • 2011
  • Hyundai Heavy Industries has developed a tidal current energy converter utilizing the accumulated technology as the world largest constructor for ship and offshore structures. The model has two sets of turbines in both ends in order to utilize the bi-directional current flows in flood and ebb tide. The torque produced by turbine in tidal current is directly delivered to generator along the horizontal axis, in which the turbine, gear, generator, gear and turbine are connected successively. The manufactured model for field test has the turbine diameter of 5 meters to produce the maximum power of 500kW at maximum current speed of 5m/s. The technical verification of tidal power converter was performed by means of small scale model test in towing tank as well as field test at the Strait of Uldolmok located in Jindo of Jeollanamdo province. Field test was performed by mounting the tidal current converter on the SEP(Self Elevating Platform) which could lower the 4 vertical legs on the seabed and could elevate platform over the water surface using the hydraulic power for itself. The field test performed for a month shows that power output is similar or larger compared with the expected one in design stage. This paper presents the development of tidal current energy converter and real sea field test by Hyundai Heavy Industries. This project has finished successfully and provided the technical advance toward commercial services for tidal current power generation in the south-west region in Korea.

  • PDF

Design and Implementation of Optimal Control Algorithms for Building Energy Management (빌딩 에너지 관리 최적화 알고리즘 설계 및 구현)

  • Jin Jung-Hwa;Chung Sun-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.10
    • /
    • pp.969-976
    • /
    • 2004
  • Building energy saving is one of the most important issues in these days. Energy saving control strategies should be developed properly to achieve the saving. One of such area we could apply is the HVAC (Heating, Ventilation and Air-Conditioning) system. Through the optimal control algorithm for building energy management system (EMS), you can not only save the cost of building energy, but also protect HVAC system components against the unexpected condition. In order to verify the effectiveness of building energy saving, field test was accomplished for several months at 'A' building. And to get the measured data, remote control was used. If the remote control is used in BAS (Building Automation System), control and monitoring can be done for all of the building systems, such as HVAC, power, lighting, security and fire-alarm etc. anywhere any time. Using the remote control, Control and monitoring is possible for the testing system without going there. As the results of field test, we could reduce $5{\sim}10\%$ of the building energy cost.

THE TENSION FIELD OF THE ENERGY FUNCTIONAL ON RIEMANNIAN SUBMERSION

  • Choi, Boo-Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.239-245
    • /
    • 2011
  • In this paper, we will study the tension field of the function related to a Riemannain submersion ${\pi}\;:\;N{\rightarrow}M$ with totally geodesic fibres. In case that the Riemannain submersion ${\pi}\;:\;N{\rightarrow}M$ particularly has a smooth map $f\;:\;M{\rightarrow}N$ which happens to be a section, we will show that tension field ${\tau}(f)$ of the energy functional can be decomposed into the horizontal and vertical parts.

An Overview of Researches Trend in Solar Energy Field (Focused on Journal of the KSES beween 2003 and 2005) (태양에너지 분야의 연구 동향 개관 (2003년${\sim}$2005년에 발표된 한국태양에너지학회 논문집을 중심으로))

  • Choi, Won-Ki;Suh, Seung-Jik
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.135-147
    • /
    • 2006
  • For some time there has been the need to know new researches trend utilizing solar energy in various fields, particularly solar energy researchers and engineers. The aim of the review is to analyze the researches trend in solar energy field of Korea. The research trend was reviewed by data on the published papers of journal of the Korean solar energy society(KSES) between 2003 and 2005. The results of this overview are provided to be an effective data for the planning of development energy resources, especially in a toward new energy policy.

Corrosion behavior and mechanism of CLAM and 316L steels in flowing Pb-17Li alloy under magnetic field

  • Xiao, Zunqi;Liu, Jing;Jiang, Zhizhong;Luo, Lin;Huang, Qunying
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1962-1971
    • /
    • 2022
  • The liquid lead-lithium (Pb-17Li) blanket has many applications in fusion reactors due to its good tritium breeding performance, high heat transfer efficiency and safety. The compatibility of liquid Pb-17Li alloy with the structural material of blanket under magnetic field is one of the concerns. In this study, corrosion experiments China low activation martensitic (CLAM) steel and 316L steel were carried out in a forced convection Pb-17Li loop under 1.0 T magnetic field at 480 ℃ for 1000 h. The corrosion results on 316L steel showed the characteristic with a superficial porous layer resulted from selective leaching of high-soluble alloy elements and subsequent phase transformation from austenitic matrix to ferritic phase. Then the porous layers were eroded by high-velocity jet fluid. The main corrosion mechanism of CLAM steel was selective dissolution-base corrosion attack on the microstructure boundary regions and exclusively on high residual stress areas. CLAM steel performed a better corrosion resistance than that of 316L steel. The high Ni dissolution rate and the erosion of corroded layers are the main causes for the severe corrosion of 316L steel.

Monitoring and Analysis of 3kW Grid-Connected PV System for Performance Evaluation

  • So Jung-Hun;Jung Young-Seok;Yu Gwon-Jong;Choi Ju-Yeop;Choi Jae-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.57-62
    • /
    • 2005
  • Grid-connected photovoltaic (PV) systems were installed and monitored at the field demonstration test center (FDTC) in Korea in October 2002. Before long-term field testing of installed PV systems, the performances of PV components were evaluated and compared through short-term performance tests of each of the PV system components such as power conditioning system and PV module under standard test conditions. A data acquisition system has been constructed for measuring and analyzing the performance of PV systems to observe the overall effect of environmental conditions on their operation characteristics. Performances of PV systems have been evaluated and analyzed not only for component perspective (PV array, power conditioning unit) but also for global perspective (system efficiency, capacity factor, electrical power energy) by review of the field test and loss factors of the systems. These results indicate that it is highly imperative to develop an optimum design technology of grid connected PV systems. The objective of this paper is not only to evaluate and analyze the performance of domestic PV systems application through long-term field testing at FDTC but also to develop evaluation, analysis and optimum technology for long-term stability and reliability of grid-connected PV systems in Korea.

A Study on Optimizing Energy Transfer of Capacitive Switching Antenna (Capacitive Switching Antenna의 최적 에너지 전달에 관한 연구)

  • Kim, Jin-Man;Bang, Jeong-Ju;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.232-238
    • /
    • 2013
  • In this paper we describe the maximum energy transfer of CSA(Capacitive Switching Antenna). CSA which is radiated antenna system contain energy storage and switch, antenna needs to high voltage source for electrical field radiation experiment. In this experiment we employed Marx generator as a charging source. CSA can radiate electrical field more efficiently by varying antenna capacitance. The electromagnetic generation system which was using CSA has some advantages which are more simple and more effective compared to exist system. We evaluated the performance of electromagnetic wave generating system using CSA. As a result UWB gain of system is 0.47, It is higher level than exist system is 0.3. Radiated electrical field strength at 1m is 70kV/m. It is measured by D-dot sensor and gap distance is 20mm. Center frequency of CSA is approximately 25MHz. When vary the antenna gap distance from 50mm to 20mm, we can find the radiation field strength is decrease and antenna center frequency is increased. We also simulated the energy transfer efficiency to compare with experiment result. Consequentially, CSA needs to appropriate capacitance which is similar value from marx generator for maximum energy transfer, and gap is less than 1mm to increase the CSA capacitance.

EL-SEP: Improved L-SEP by adding Single-hop layer

  • LEE, WooSuk;Jung, Kye-Dong;Lee, Jong-Yong
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.50-56
    • /
    • 2017
  • Wireless sensor nodes have limited energy, so it is important to optimize energy consumption to preserve network lifetime. Various protocols have been proposed for this purpose. LEACH protocol and SEP are the representative protocols. These protocols become less effective as the Sensor Field becomes wider. To improve this, MR-SEP and L-SEP were proposed. These protocols increase the energy efficiency by dividing the Sensor Field into layers and reducing the transmission distance. However, when dividing a layer, there are cases where it is divided inefficiently, and a node within a certain range from a Base Station has a better transmission efficiency than a direct transmission method using a cluster method. In this paper, we propose a Single-hop layer for L-SEP to improve inefficient layer division and near node transmission efficiency. When the larger the Sensor Field, the better the performance of the proposed method by up to 87%. The larger the sensor field, the more efficient the proposed method is over the conventional method. That is, the proposed method is suitable for the wide Sensor Field.

Remote Field Energy Flow Path at Nonmagnetic Coaxial Tubes (비자성체 이중관의 원격장 에너지 전달 경로)

  • Yi, Jae-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.526-531
    • /
    • 2001
  • The flow of remote field eddy current energy is studied at nonmagnetic coaxial tubes by using both experiments and finite element calculations based on commercial software package. The results showed that remote field eddy current energy at coaxial tubes flow along over the outer surface of external tube, not through the gap between internal and external tubes. This means that the through wall transmission characteristic of remote field eddy current testing (RFECT) is still valid at tube in tube configurations and the RFECT could be potential nondestructive technique for crack detection, spacer location and gap sizing at the coaxial CANDU fuel channel tubes.

  • PDF