• 제목/요약/키워드: field of energy

검색결과 5,815건 처리시간 0.039초

혼합 다채널 사형 유로의 혼합영역이 PEMFC 성능에 미치는 영향 (The Effect of Mixing Region in Mixed Multiple Serpentine Flow-field to PEMFC Performance)

  • 이지홍;이명용;김헌주;이상석;이도형
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.265-273
    • /
    • 2009
  • Proton Exchange Membrane Fuel Cell (PEMFC) has low operating temperature and high efficiency. And PEMFC consists of many components as bipolar plate, gas diffusion layer, membrane etc.. Flow-field in bipolar plate roles path for transporting reactants to membrane. Therefore a design of flow-field has an effect on PEMFC's performance. In this study, Computational Fluid Dynamics (CFD) simulations were performed for comparing mixed multiple serpentine (MMS) flow-field and multiple serpentine (MS) flow-field. And we studied an effect according to change mixing region design in MMS flow-field. Finally the applicability of results is verified by performing CFD simulation about fixed MMS flow-field which is combined good designs.

200kW 타워형 태양열발전시스템의 헬리오스타트 필드 운영 알고리즘 개발 (Development of Heliostat Field Operational Algorithm for 200kW Tower Type Solar Thermal Power Plant)

  • 박영칠
    • 한국태양에너지학회 논문집
    • /
    • 제34권5호
    • /
    • pp.33-41
    • /
    • 2014
  • Heliostat field in a tower type solar thermal power plant is the sun tracking mirror system which affects the overall efficiency of solar thermal power plant most significantly while consumes a large amount of energy to operate it. Thus optimal operation of it is very crucial for maximizing the energy collection and, at the same time, for minimizing the operating cost. Heliostat field operational algorithm is the logics to control the heliostat field efficiently so as to optimize the heliostat field optical efficiency and to protect the system from damage as well as to reduce the energy consumption required to operate the field. This work presents the heliostat field operational algorithm developed for the heliostat field of 200kW solar thermal power plant built in Daegu, Korea. We first review the structure of heliostat field control system proposed in the previous work to provide the conceptual framework of how the algorithm developed in this work could be implemented. Then the methodologies to operate the heliostat field properly and efficiently, by defining and explaining the various operation modes, are discussed. A simulation, showing the heat flux distribution collected by the heliostat field at the receiver, is used to show the usefulness of proposed heliostat field operational algorithm.

증속기 현장시험 국내 적용 사례 및 절차 분석 (Domestic Application and Procedure Analysis of Gearbox Field Test)

  • 이광세;강민상;김석우;이진재
    • 신재생에너지
    • /
    • 제16권4호
    • /
    • pp.23-32
    • /
    • 2020
  • The wind turbine gearbox has the longest downtime among other major turbine components such as blades, generators, and main bearings. Therefore, gearbox manufacturers conduct rig tests to evaluate conformity in terms of design and function. Rig tests, however, have limited similarity compared with atmospheric wind turbine operating conditions. Rig test conditions are thoroughly controlled and maintained by testers and the component certificates of gearboxes issued through the test cannot fulfill wind farm operator's requirements. Hence, certification bodies such as DNV-GL and UL require a mandatory gearbox field test report for type certification. The Korea Energy Agency (KEA) also introduced gearbox field test as a part of the KS type certificate in 2016, although it is optional . In this paper, gearbox field test procedures and requirements are introduced, and the first domestic application case of the test is reported. The field test was conducted with a 1.5 MW wind turbine gearbox located in Jeju as the test object.

전자선 에너지 및 조사야에 따른 유효선원 피부 간 거리 변화 (Variation of Effective SSD According to Electron Energies and Irradiated Field Sizes)

  • 양칠용;염하용;정태식
    • Radiation Oncology Journal
    • /
    • 제5권2호
    • /
    • pp.157-163
    • /
    • 1987
  • It is known that fixed source to skin distance (SSD) cannot be used when the treatment field is sloped or larger than the size of second collimator in electron beam irradiation and inverse square law using effective ssd should be adopted. Effective SSDs were measured in different field sizes in each 6, 9, 12, 15 and 18MeV electron energy by suing NELAC 1018D linear accelerator of Kosin Medical Center. We found important parmeters of effective SSD. 1. Minimum effective SSD was 58.8cm in small field size of $6\pm6cm$ and maximum effective SSD was 94.9cm in large field size of $25\pm25cm$, with 6MeV energy. It's difference was 36.1cm. The dose rate at measuring point was quite different even with a small difference of SSD in small field $(6\times6cm)$ and low energy (6 MeV). 2. Effective SSD increased with field size in same electron energy. 3. Effective SSDs gradually increased with the electron energies and reached maximum at 12 or 15 MeV electron energy and decreased again at 18MeV electron energy in each identical field size. And so the effective SSD should be measured in each energy and field size for practical radiotherapy.

  • PDF

재실밀도의 변화에 따른 건물에너지 사용량 분석을 위한 예비조사 (A Preliminary Study the Effect of Occupancy Densities on Building Energy Consumption)

  • 최종대;윤근영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.130-133
    • /
    • 2011
  • This paper reports the Survey results from a field monitoring study of office occupancy densities. The field measurement of a office in Yongin was carried out from 19 September to 30 September 2011. The survey has an aim to reveal the building energy consumption relationship between occupancy densities of a realistic office and the previous studies. The results showed that hourly occupied density of the previous studies is more higher than a field survey. we investigated the effects of difference occupancy densities on annual heating and cooling energy consumption using EnergyPlus. Heating and cooling consumption was raised because of the increased occupancy density. therefore, accurately measure the occupnacy schedule is important in order to reduce excessive building energy consumption, and is an significant element to be considered in the energy simulation.

  • PDF

RELATION BETWEEN VIRIAL ENERGY AND MAGNETIC ENERGY PROVIDED BY AN EMERGING FLUX TUBE ON THE SUN

  • 강지혜;;안준모;이환희
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.86.1-86.1
    • /
    • 2012
  • The MHD virial theorem applied for observed photospheric field may be the one of way to estimate magnetic energy of generally invisible coronal magnetic structure. However, the photospheric field is not in a force-free state, so the application of virial theory needs some care. Here we use a series of MHD simulations of emerging field to investigate how we can apply the virial theorem to the emerging field. In early emerging phase, virial energy has a minus value although positive area at the photosphere is continuously generated toward a late emerging phase. We discuss why this tendency occurs. Then we derive the critical height where the actual emerging magnetic energy is almost comparable to the virial energy. If the difference between virial energy and magnetic energy becomes 10 percentage of the magnetic energy, we define this is the critical height, and assume the emerging field is close to force-free. We also discuss how the critical height changes with the initial twist of an emerging flux tube.

  • PDF

이중계자를 갖는 10 MW급 전초전도 동기 발전기의 교류손실 해석 (AC Loss Analysis of 10 MW Class Fully High Temperature Superconducting Synchronous Generators with Dual Field Windings)

  • 박상호;이명희;이세연;양형석;김우석;이지광;최경달
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.467-472
    • /
    • 2020
  • The superconducting synchronous generator is one of the breakthrough elements for direct-drive wind turbines because it is light and small. Normally the superconducting one has copper armature windings in the stator and superconducting field windings on the rotor. The high resistance of the armature can make large copper losses, comparing with the conventional generators with a gear box. One of the solutions for the large copper losses could be a fully superconducting generator. But the high magnetic fields from the superconducting field windings on the rotor also make high perpendicular magnetic fields on the superconducting tapes in the armature windings. We have proposed a fully superconducting synchronous generator with dual field windings. It could immensely decrease the circumferential component of the magnetic field from the field windings at the armature windings. In this paper, we conceptually designed 3 types of superconducting synchronous generators. The first one is the fully superconducting one with conventional structure, which has superconducting armature windings in the stator and superconducting field windings on the rotor. The second one is the one with dual superconducting field windings and superconducting armature windings between them. The last one is the same as the third one except the structure of the armature. If the concentrated armature windings are superconducting ones with cryostats, then they cannot be installed within the span of 2 poles. So, we adopted 3 phases windings within 4 poles system. It makes more AC losses but can be manufactured really.

KT-2 Poloidal-Field (PF) System Design

  • J.M. Han;Lee, K.W.;B.G. Hong;C.K. Hwang;B.J. Yoon;J.S. Yoon;Y.D. Bae;W.S. Song;Kim, S.K.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(4)
    • /
    • pp.425-431
    • /
    • 1996
  • KT-2 poloidal-field (PF) system is designed to cope the up-down symmetric double-null (DN) and asymmetric single-null (SN) discharges with typical plasma parameters, in which three sets of "design-basis" scenarios - the ohmic heating (OH), the 5MW and the high bootstrap (HIBS) baseline modes - are applied. The power and energy demand for each cases are also deduced. The peak power and the maximum energy requirements for the KT-2 magnet system, incorporating the PF and the toroidal-field (TF) coils, are proven to be 123MW and 1601MJ, respectively when it is driven in DN configuration. The KT-2 PF system is capable of achieving the machine mission of creating a 500kA heated plasma with a current flattop of $\geq$20 seconds.

  • PDF

이산 Wavelet 변환을 이용한 3차원 등방성 난류속도장의응집구조 추출 (Coherent Structure Extraction from 3-Dimensional Isotropic Turbulence Velocity Field Using Discrete Wavelet Transform)

  • 이상환;정재윤
    • 대한기계학회논문집B
    • /
    • 제28권9호
    • /
    • pp.1032-1041
    • /
    • 2004
  • In this study we decompose the 3-dimensional velocity field of isotropic turbulent flow into the coherent and the incoherent structure using the discrete wavelet. It is shown that the coherent structure, 3% wavelet modes, has 98% energy and 88% enstrophy and its statistical characteristics are almost same as the original turbulence structure. And it is confirmed that the role of the coherent structure is that it produces the turbulent kinetic energy at the inertia range then transfers energy to the dissipation range. The incoherent structure, with residual wavelet modes, is uncorrelated and has the Gaussian probability density function but it dissipates the kinetic energy in dissipation range. On the procedure, we propose a new but easy way to get the threshold by applying the energy partition percentage concept about coherent structure. The vorticity field extracted from the wavelet-decomposed velocity field has the same structure as the result of the precedent studies which decomposed vorticity field directly using wavelet. Therefore it has been shown that velocity and vorticity field are on the interactive condition.

Numerical Simulation of the Flow Field inside a New 1 Ton/Day Entrained-Flow Gasifier in KIER

  • Li, Xiang-Yang;Choi, Young-Chan;Park, Tae-Jun
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2000년도 춘계 학술발표회 논문집
    • /
    • pp.43-50
    • /
    • 2000
  • The flow field of a 1 Ton/Day entrained-flow gasifier constructed in KIER was numerical simulate in this paper. The standard $k-{\varepsilon}$ turbulence model and simple procedure was used with the Primitive-Variable methods during computation. In order to find the influence factors of the flow field which may have great effects on coal gasification process inside gasifier, difference geometry parameters at various operating conditions were studied by simulation methods. The calculation results show that the basic shape of the flow field is still parabolic even the oxygen gas is injected from the off-axis position. There exist an obvious external recirculation zone with a length less than 1.0m and a small internal recirculation region nears the inlet part. The flow field inside the new gasifier is nearly similar as that of the old 0.5T/D gasifier at same position if the design of burner remains unchanged.

  • PDF