• Title/Summary/Keyword: field load testing

Search Result 154, Processing Time 0.025 seconds

A combined experimental and numerical method for structural response assessment applied to cable-stayed footbridges

  • Kossakowski, Pawel G.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.143-163
    • /
    • 2017
  • This paper presents a non-destructive testing method for estimating the structural response of cable-stayed footbridges. The approach combines field measurements with a numerical static analysis of the structure. When the experimental information concerning the structure deformations is coupled with the numerical data on the structural response, it is possible to calculate the static forces and the design tension resistance in selected structural elements, and as a result, assess the condition of the entire structure. The paper discusses the method assumptions and provides an example of the use of the procedure to assess the load-carrying capacity of a real steel footbridge. The proposed method can be employed to assess cable-stayed structures including those made of other materials, e.g., concrete, timber or composites.

Development of Multistage Roots Dry Vacuum Pump Technology (다단 루츠 드라이 진공펌프 기술 개발)

  • Ryu, Jae-Kyeong
    • Vacuum Magazine
    • /
    • v.2 no.4
    • /
    • pp.39-46
    • /
    • 2015
  • After stepping into a new field of vacuum 30 years ago, our company has grown up steadily as a specialized vacuum industry, and now we can provide vacuum devices covering most of the pressure range. We are planning to put out high level dry pump like a multistage Roots pump on the market in the near future. Procedures of technology development for designing, fabricating, and testing the multistage Roots pump of 600 L/min class will be briefly reported. Core items of the technical development on the multistage Roots pump are as follows; elaborated profile design of 3-lobe rotors using an involute curve, optimization of rotor dimensions, especially for clearances and rotor width, considering the pumping speed, compression ratio and heat load, and establishment of a standardized test system. At present, the multistage Roots pump is about to come into commercialization.

ANALYSIS FOR 3-POINT LOADED DISC BY PHOTOELASTICITY (3점 압축하중을 받는 원판의 광탄성 해석)

  • 함경춘;이하성
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.1
    • /
    • pp.5-12
    • /
    • 1992
  • Disc specimen with the center crack and edge crack simulated by two-dimensional static method is used to analyze the stress field around the crack tip in terms of the stress intensity factor, K. A simple and convenient method of testing to realize the mifed mode stress intensity factor of the cracked body is used, The conclusions obtatined in this photoelastlc analysis are as follows ; 1. According to this experiment, cracked disc specimen can be used to demonstrate the mixed mode stress intensity factor analysis by simply changing the crack angle from the loading line. 2. Despite the simplicity and continuous data reading, the photoelastic method shows the slightly lower strain reading comparing to the FEM analysis method. 3. In this photoelastic analysis, $K_{I}$ of center cracked disc specimen under a pair of compressive load shows negative value as the crack angle increases over 30$^{\circ}$.

  • PDF

Hygrothermal effects on buckling of composite shell-experimental and FEM results

  • Biswal, Madhusmita;Sahu, Shishir Kr.;Asha, A.V.;Nanda, Namita
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1445-1463
    • /
    • 2016
  • The effects of moisture and temperature on buckling of laminated composite cylindrical shell panels are investigated both numerically and experimentally. A quadratic isoparametric eight-noded shell element is used in the present analysis. First order shear deformation theory is used in the present finite element formulation for buckling analysis of shell panels subjected to hygrothermal loading. A program is developed using MATLAB for parametric study on the buckling of shell panels under hygrothermal field. Benchmark results on the critical loads of hygrothermally treated woven fiber glass/epoxy laminated composite cylindrical shell panels are obtained experimentally by using universal testing machine INSTRON 8862. The effects of curvature, lamination sequences, number of layers and aspect ratios on buckling of laminated composite cylindrical curved panels subjected to hygrothermal loading are considered. The results are presented showing the reduction in buckling load of laminated composite shells with the increase in temperature and moisture concentrations.

An Analysis on Rise of Rail Potential And A Study on Control Method for It in DC Feeding System (직류급전계통에서의 레일전위 상승 분석 및 억제 방안 연구)

  • Min, Myung-Hwan;Jung, Ho-Sung;Park, Young;Kim, Hyeng-Chul;Shin, Myong-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.680-685
    • /
    • 2011
  • Nowadays, in metropolitan railroad, DC feeding system is being generally applied. In order to reduce damages of electro-chemical corrosion caused by stray current and leakage current, in DC feeding system, rail is used as negative-polarity return conductor for traction load current. However, it has problem of rail potential increase and there are no adequate measures to prevent it in domestic. In this paper, we presented fundamental theory and related standards about rail potential increase. And then, we analyzed field testing data and simulated a variety of operations by using PSCAD/EMTDC as an analysis program of power system. In addition, voltage control device is suggested to prevent accidents caused by rail potential increase.

Dynamic testing of a soil-steel bridge

  • Beben, Damian;Manko, Zbigniew
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.301-314
    • /
    • 2010
  • The paper presents the results and conclusions of dynamic load tests that were conducted on a road bridge over the Mokrzyca river in Wroclaw (Poland) made of galvanized corrugated steel plates (CSP). The critical speed magnitudes, velocity vibration, vibration frequency were determined in the paper. The dynamic analysis is extremely important, because such studies of soil-steel bridges in the range of dynamic loads are relatively seldom conducted. Conclusions drawn from the tests can be most helpful in the assessment of behaviour of this type of corrugated plate bridge with soil. In consideration of application of this type of structure in the case of small-to-medium span bridges, the conclusions from the research will not be yet generalized to all types of such solutions. The detailed reference to all type of such bridge structures would be requiring additional analysis (field tests and calculations) on the other types of soil-steel bridges.

Investigation of Likelihood of Cracking in Reinforced Concrete Bridge Decks

  • ElSafty, Adel;Abdel-Mohti, Ahmed
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.79-93
    • /
    • 2013
  • One of the biggest problems affecting bridges is the transverse cracking and deterioration of concrete bridge decks. The causes of early age cracking are primarily attributed to plastic shrinkage, temperature effects, autogenous shrinkage, and drying shrinkage. The cracks can be influenced by material characteristics, casting sequence, formwork, climate conditions, geometry, and time dependent factors. The cracking of bridge decks not only creates unsightly aesthetic condition but also greatly reduces durability. It leads to a loss of functionality, loss of stiffness, and ultimately loss of structural safety. This investigation consists of field, laboratory, and analytical phases. The experimental and field testing investigate the early age transverse cracking of bridge decks and evaluate the use of sealant materials. The research identifies suitable materials, for crack sealing, with an ability to span cracks of various widths and to achieve performance criteria such as penetration depth, bond strength, and elongation. This paper also analytically examines the effect of a wide range of parameters on the development of cracking such as the number of spans, the span length, girder spacing, deck thickness, concrete compressive strength, dead load, hydration, temperature, shrinkage, and creep. The importance of each parameter is identified and then evaluated. Also, the AASHTO Standard Specification limits liveload deflections to L/800 for ordinary bridges and L/1000 for bridges in urban areas that are subject to pedestrian use. The deflection is found to be an important parameter to affect cracking. A set of recommendations to limit the transverse deck cracks in bridge decks is also presented.

Girder Distribution Model for Existing Short and Medium Span Steel Girder Bridges (단·중경간 강형교 거더의 횡분배 모델)

  • Eom, Jun-Sik;Nowak, Andrzej S.;Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.219-229
    • /
    • 2003
  • The objective of this work is to verify the Code specified girder distribution factors for short and medium span bridges. To accomplish this objective, field tests were carried out on seventeen simply supported highway bridges. This paper presents the procedure and results of field tests that were performed to verify girder distribution factors. Finite Element analyses previously performed at the University of Michigan indicated that in most cases currently used girder distribution factors specified in AASHTO Codes are too conservative. However, these studies also showed that for short spans and short girder spacings, the girder distribution factors can be too permissive. Therefore, this paper focused on experimental evaluation of girder distribution factors for short and medium span steel girder bridges. The results were compared with the distribution factors specified by AASHTO Standard (2000) and AASHTO LRFD Code (1998). It has been found that the measured girder distribution factors are lower than AASHTO values in most cases, and sometimes the code specified values are overly conservative. The research work involved formulation of the testing procedure, selection of structure, installation of equipment, measurements, and interpretation of the results.

Seismic performance of steel plate shear walls with variable column flexural stiffness

  • Curkovic, Ivan;Skejic, Davor;Dzeba, Ivica
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.1-18
    • /
    • 2019
  • In the present study, the behavior of steel plate shear walls (SPSW) with variable column flexural stiffness is experimentally and numerically investigated. Altogether six one-bay one-story specimens, three moment resisting frames (MRFs) and three SPSWs, were designed, fabricated and tested. Column flexural stiffness of the first specimen pair (one MRF and one SPSW) corresponded to the value required by the design codes, while for the second and third pair it was reduced by 18% and 36%, respectively. The quasi-static cyclic test result indicate that SPSW with reduced column flexural stiffness have satisfactory performance up to 4% story drift ratio, allow development of the tension field over the entire infill panel, and cause negligible column "pull-in" deformation which indicates that prescribed minimal column flexural stiffness value, according to AISC 341-10, might be conservative. In addition, finite element (FE) pushover simulations using shell elements were developed. Such FE models can predict SPSW cyclic behavior reasonably well and can be used to conduct numerical parametric analyses. It should be mentioned that these FE models were not able to reproduce column "pull-in" deformation indicating the need for further development of FE simulations with cyclic load introduction which will be part of another paper.

Evaluation of Warm Mix Asphalt Mixtures with Foaming Technology and Additives Using New Simple Performance Testing Equipment (새로운 Simple Performance Testing 장비를 이용한 중온형 폼드 아스팔트 혼합물의 공용성 평가)

  • Kim, Yong-Joo;Im, Soo-Hyok;Lee, David;Hwang, Sung-Do
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.19-29
    • /
    • 2008
  • To produce asphalt mixtures at temperature significantly below $135^{\circ}C$, called "Warm Mix Asphalt (WMA)", new technologies are currently being developed worldwide. To produce WMA mixtures in this research, foaming technology is adopted to effectively disperse asphalt binder at lower temperature than hot mix asphalt (HMA) in the field. The main objectives of this study are to develop WMA process using foaming technology (WMA-foam) and evaluate its performance characteristics under various temperatures and loading conditions. WMA-foam mixtures were produced by injecting PO 64-22 foamed asphalt into warm aggregates whereas WMA mixtures were produced by adding PO 64-22 asphalt (without foaming) in the warm aggregates. Both dynamic modulus and flow number of WMA-foam mixtures were higher than those of WMA mixtures. Based on the limited dynamic modulus and repeated load test results, it is concluded that the WMA-foam mixtures using warm aggregates at $100^{\circ}C$ are more resistant to fatigue cracking and rutting than WMA mixtures.

  • PDF