• 제목/요약/키워드: field emission properties

검색결과 865건 처리시간 0.03초

탄소나노튜브 캐소드의 전계방출 특성에 대한 표면 형상과 부착력의 영향 (Effect of Surface Morphology and Adhesion Force on the Field Emisson Properties of Carbon Nanotube Based Cathode)

  • 정혁;조유석;강영진;김도진
    • 한국재료학회지
    • /
    • 제18권5호
    • /
    • pp.277-282
    • /
    • 2008
  • The effects of the field emission property in relation to the surface morphology and adhesion force were investigated. The single-wall-nanotube-based cathode was obtained by use of an in-situ arc discharge synthesis method, a screen-printing method and a spray method. The morphologies of the formed emitter layers were very different. The emission stability and uniformity were dramatically improved by employing an in-situ arc discharge synthesis method. In this study, it was confirmed that the current stability and uniformity of the field emission of the cathode depend on the surface morphology and adhesion force of the emitters. The current stability of the field emission device was also studied through an electrical aging process by varying the current and electric field.

Excitation and Emission Properties of Adsorbed U(VI) on Amorphous Silica Surface

  • Jung, Euo Chang;Kim, Tae-Hyeong;Kim, Hee-Kyung;Cho, Hye-Ryun;Cha, Wansik
    • 방사성폐기물학회지
    • /
    • 제18권4호
    • /
    • pp.497-508
    • /
    • 2020
  • In the geochemical field, the chemical speciation of hexavalent uranium (U(VI)) has been widely investigated by performing measurements to determine its luminescence properties, namely the excitation, emission, and lifetime. Of these properties, the excitation has been relatively overlooked in most time-resolved laser fluorescence spectroscopy (TRLFS) studies. In this study, TRLFS and continuous-wave excitation-emission matrix spectroscopy are adopted to characterize the excitation properties of U(VI) surface species that interact with amorphous silica. The luminescence spectra of U(VI) measured from a silica suspension and silica sediment showed very similar spectral shapes with similar lifetime values. In contrast, the excitation spectra of U(VI) measured from these samples were significantly different. The results show that distinctive excitation maxima appeared at approximately 220 and 280 nm for the silica suspension and silica sediment, respectively.

스크린 프린팅된 탄소나노튜브의 전계방출 특성 (Field Emission Properties of Screen Printed Carbon Nanotubes)

  • 이양두;이정아;문승일;박정훈;한종훈;유재은;이윤희;남산;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제17권5호
    • /
    • pp.541-544
    • /
    • 2004
  • Multi- wall carbon nanotubes(MWNTs) were synthesized by thermal chemical vapor deposition. The paste for screen printing was composed of MWNTs, organic vehicle and glass frit. Carton nanotube paste was screen-printed on ITO(indium tin oxide) deposited soda lim을 glass, and then heat treatment was performed. Before the surface treatment, turn on field of derive was 2.6 V/$\mu\textrm{m}$. After the surface treatment, the value was changed into 1.8 V/$\mu\textrm{m}$. The anode current of the derive with 2.83 V/$\mu\textrm{m}$(turn on field) was changed 4 $\mu\textrm{A}$ into 390 $\mu\textrm{A}$ at 1,700 V. Adsorption effect of MWNTs onto phosphor of anode plate was observed by the field emission measurement and resulted in bad effects on properties of devices lifetime and emission lighting.

질소 플라즈마처리에 의한 a-C 박막의 전계방출특성 변화에 관한 연구 (Study on Properties Change of a-C Thin Film by N2 Plasma Treatment)

  • 류정탁
    • 한국전기전자재료학회논문지
    • /
    • 제17권12호
    • /
    • pp.1332-1336
    • /
    • 2004
  • Amorphous carbon (a-C) films have been deposited on Si(100) substrate using RF magnetron system in order to investigate the electron field emission properties. The a-C films were treated by $N_2$ gas plasma at room temperature. Surface morphologices and structural properties of the a-C films before and after $N_2$ plasma treatment were observed by scanning electron microscopy and Raman spectroscope, respectively. Structural properties and surface morphology of the a-C films were changed by $N_2$ plasma treatment. The emission properties can be improved by the plasma treatment according to the contents of nitrogen on the a-C films which is varied by plasma treatment time. Before the plasma treatment, the a-C films are found to have a threshold field of 14 V/$\mu$m, but the a-C film treated by $N_2$ plasma for 30 min exhibit threshold field as low as 6.5 V/$\mu$m.

Synthesis and Properties of Carbon Nanotube Paste with Different Inorganic Binders for Field Emission Display

  • Park, Jae-Hong;Moon, Jin-San;Nam, Joong-Woo;Park, Jong-Hwan;Berdinsky, A.S.;Yoo, Ji-Beom;Lee, C.G.;Park, Chong-Yun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.468-470
    • /
    • 2004
  • CNT pastes with different inorganic binder such as glass frit and spin on glass (SOG) were synthesized by using multi-walled nanotube (MWNT) grown by CVD. The uniformity of cathode layer after firing was enhanced and the emission current density at an applied field of 7.95V/${\mu}m$ increased from 133${\mu}A$/$cm^2$ to 265${\mu}A$/$cm^2$ when inorganic binder changed from glass frit to SOG. The emission properties of CNT pastes with SOG were stable and uniform although firing was carried out at relatively high temperature of 450$^{\circ}C$ under air. It is concluded that SOG is more suitable inorganic binder than glass frit for field emission application.

  • PDF

Transparent carbon nanotube field emission devices for field emission display and lamp

  • Cho, You-Suk;Lee, Se-Min;Park, Hee-Yong;Lee, Sun-Hee;An, Myung-Chan;Jeong, Se-Young;Kim, Do-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1233-1234
    • /
    • 2006
  • A simple new method to fabricate transparent carbon nanotube field emission devices was developed. The highly graphitized single wall carbon nanotubes were attached on Sn/ITO glass by arc discharge method. Post heat treatments below the deformation temperature of soda-lime glass guaranteed a good mechanical adhesion and electrical contact of the nanotubes. The Sn layer was oxidized below $400^{\circ}C$ and became transparent. As increasing the oxidation temperatures, the emission properties became stable and life time of emitter has been increased.

  • PDF

Emission Behavior of Screen Printed CNT Field Emitters for Advanced Lamp Application

  • Leer, Myoung-Bok;Kim, Dae-Jun;Song, Yoon-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.691-692
    • /
    • 2009
  • Screen printable CNT pastes were formulated including conductive nano particles (CNPs) and their properties were investigated with an expectation of stable cold cathodes for advanced lamp application. CNT cathodes showed a turn-on field of 1~1.5V/um, a life time of ~100 hours at an emission current density of 10uA/$cm^2$ for DC-bias. Detailed analysis of measured I-V was carried out by applying Fowler-Nordheim model to trace down the origin of emission property degradation.

  • PDF

다결정 다공질 실리콘 나노구조의 전계 방출 특성 (Field Emission properties of Porous Polycrystalline silicon Nano-Structure)

  • 이주원;김훈;박종원;이윤희;장진;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.69-72
    • /
    • 2002
  • We establish a visible light emission from porous polycrystalline silicon nano structure(PPNS). The PPNS layer are formed on heavily doped n-type Si substrate. 2um thickness of undoped polycrystalline silicon deposited using LPCVD (Low Pressure Chemical Vapor Deposition) anodized in a HF: ethanol(=1:1) as functions of anodizing conditions. And then a PPNS layer thermally oxidized for 1 hr at $900^{\circ}C$. Subsequently, thin metal Au as a top electrode deposited onto the PPNS surface by E-beam evaporator and, in order to establish ohmic contact, an thermally evaporated Al was deposited on the back side of a Si-substrate. When the top electrode biased at +6V, the electron emission observed in a PPNS which caused by field-induces electron emission through the top metal. Among the PPNSs as functions of anodization conditions, the PPNS anodized at a current density of $10mA/cm^{2}$ for 20 sec has a lower turn-on voltage and a higher emission current. Furthermore, the behavior of electron emission is uniformly maintained.

  • PDF

유리기판 위에 성장된 카본나노튜브를 이용한 고휘도 램프 특성 (Development of flat type back-lamp using carbon nano tubes grown on glass substrate)

  • 이양두;이덕중;박정훈;유재은;이윤희;장진;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 디스플레이 광소자 분야
    • /
    • pp.89-92
    • /
    • 2002
  • Carbon nano tubes(CNTs) have been reported as field emission source because has a sharp tip, a high aspect tip, high chemical stability, high mechanical strength and low work function properties. In this study, we fabricated successfully the back-lamp of the I-inch flat type using CNTs, which was grown directly on cathode substrate of sodalime glass at low temperature. The brightness of CNT back-lamp is measured to $14 Kcd/m^{2}$ at $2000V_{dc}$ in spacing of $500{\mu}m$. And, the emission properties of packaged CNT back-lamp was analyzed as function of applying voltage and times.

  • PDF

탄소 나노튜브 위에 붕소 및 탄소 질화 박막이 코팅된 이종접합 구조 미세팁의 전자방출 특성 (Electron Emission Properties of Hetero-Junction Structured Carbon Nanotube Microtips Coated With BN And CN Thin Films)

  • 노영록;김종필;박진석
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.743-748
    • /
    • 2010
  • Boron nitride (BN) and carbon nitride (CN) films, which have relatively low work functions and commonly exhibit negative electron affinity behaviors, were coated on carbon nanotubes (CNTs) by magnetron sputtering. The CNTs were directly grown on metal-tip (tungsten, approximately 500nm in diameter at the summit part) substrates by inductively coupled plasma-chemical vapor deposition (ICP-CVD). The variations in the morphology and microstructure of CNTs due to coating of the BN and CN films were analyzed by field-emission scanning electron microscopy (FE-SEM). The energy dispersive x-ray (EDX) spectroscopy and Raman spectroscopy were used to identify the existence of the coated layers (CN and BN) on CNTs. The electron-emission properties of the BN-coated and CN-coated CNT-emitters were characterized using a high-vacuum field emission measurement system, in terms of their maximum emission currents ($I_{max}$) at 1kV and turn-on voltage ($V_{on}$) for approaching $1{\mu}A$. The results showed that the $I_{max}$ current was significantly increased and the $V_{on}$ voltage were remarkably reduced by the coating of CN or BN films. The measured values of $I_{max}-V_{on}$ were as follows; $176{\mu}A$-500V for the 5nm CN-coated emitter and $289{\mu}A$-540V for the 2nm BN-coated emitter, respectively, while the $I_{max}-V_{on}$ of the as-grown (i.e., uncoated) emitter was $134{\mu}A$-620V. In addition, the CNT emitters coated with thin CN or BN films also showed much better long-term (up to 25h) stability behaviors in electron emission, as compared with the conventional CNT emitter.