• 제목/요약/키워드: field emission properties

검색결과 864건 처리시간 0.024초

촉매처리 방법에 따른 탄소 나노튜브의 전계방출 특성 (Field-emission characteristics of carbon nanotubes: The effect of catalyst preparation)

  • 박창균;윤성준;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.38-39
    • /
    • 2006
  • We present experimental results that regard the effects of catalyst preparation on the structural and field-emissive properties of CNTs. The CNTs used in this research have been synthesized using the inductively coupled plasma-chemical vapor deposition (ICP-CVD) method. Catalyst materials (such as Ni, Co, and Invar 426) are varied and deposited on buffer films by RF magnetron sputtering. Prior to growth of CNTs, $NH_3$ plasma etching has also been performed with varying plasma etching time and power. For all the CNTs grown, nanostructures and morphologies are analyzed using Raman spectroscopy and FESEM, in terms of buffer films, catalyst materials, and pre-treatment conditions. Furthermore, the field electron-emission of CNTs are measured and characterized in terms of the catalyst preparation environments. The CNTs grown on Nicatalyst layer would be more effectual for enhancing the growth rate and achieving the vertical-alignment of CNTs rather than other buffer materials from results of SEM study. The crystalline graphitic structure of CNTs is improved as the catalyst dot reaches a critical size. Also, the field-emission result shows that the CNTs using Ni catalyst would be more favorable for improving electron-emission capabilities of CNTs compared with other samples.

  • PDF

Novel room temperature grown carbon based cathodes for field emission using diamond nano-particle seeding technique

  • Satyanarayana, B.S.;Hiraki, A.
    • 한국표면공학회지
    • /
    • 제34권5호
    • /
    • pp.448-454
    • /
    • 2001
  • Low field electron emission from novel carbon based cold cathodes is reported. The cathodes consisted of a layer of nanoseeded diamond and an over layer of nanocluster carbon films. The nanoseeded diamond was first coated on to thesubstrate. The nanocluster carbon films were then deposited on the nanocrystalline diamond coated substrates using the cathodic arc process at room temperature. The heterostructured microcathodes were observed to exhibit electron emission currents of 1 $\mu$A/cm$^2$ at fields as low as 1.5 to 2V/$\mu$m. The effect of the nanoseeded diamond size and concentration and the properties of different nanocluster carbon films on emission characteristics is presented.

  • PDF

LPCVD로 형성된 실리콘 나노점의 전계방출 특성 (Electron Field Emission Characteristics of Silicon Nanodots Formed by the LPCVD Technique)

  • 안승만;임태경;이경수;김정호;김은겸;박경완
    • 대한금속재료학회지
    • /
    • 제49권4호
    • /
    • pp.342-347
    • /
    • 2011
  • We fabricated the silicon nanodots using the low pressure chemical vapor deposition technique to investigate their electron field emission characteristics. Atomic force microscope measurements performed for the silicon nanodot samples having various process parameters, such as, deposition time and deposition pressure, revealed that the silicon nanodots with an average size of 20 nm, height of 5 nm, and density of $1.3\;{\times}\;10^{11}\;cm^{-2}$ were easily formed. Electron field emission measurements were performed with the silicon nanodot layer as the cathode electrode. The current-voltage curves revealed that the threshold electric field was as low as $8.3\;V/{\mu}m$ and the field enhancement factor reached as large as 698, which is compatible with the silicon cathode tips fabricated by other techniques. These electron field emission results point to the possibility of using a silicon-based light source for display devices.

백색광을 발하는 면발광소자의 휘도 및 표면특성 (Luminance and Surface Properties of P-ELD Emitted White Light)

  • 박수길;조성렬;손원근;박대희;이주성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.403-406
    • /
    • 1998
  • Electroluminescence(EL) come from the light emission obtained by electrical excitation energy passing through a phosphor layer under applied high electrical field. The preparation and characterizations of light emitting ACPEL(alternating-current powder electroluminescent) cell based on two kinds of phosphor mixed ZnS:Mn, Cu and ZnS:Cu phosphor. Basic structure is ITO/Mixed Phosphor/insulator/Al sheet, each layer was mixed by binder, which concentration 11p for phosphor, 8p for insulator. Dielectric properties was investigated first and emission properties of P-LED based on ZnS:Mn,Cu/ZnS:Cu,Br mixture. Emission spectra exhibits two kinds of main peaks at 100V, 1kHz sinusoidal excitation.

  • PDF

Surface-Plasmon Assisted Transmission Through an Ultrasmall Nanohole of ~ 10 nm with a Bull's Eye Groove

  • Kim, Geon Woo;Ko, Jae-Hyeon;Park, Doo Jae;Choi, Seong Soo;Kim, Hyuntae;Choi, Soo Bong
    • Journal of the Korean Physical Society
    • /
    • 제73권11호
    • /
    • pp.1698-1702
    • /
    • 2018
  • We simulate the light transmission through an extremely small nanoscale aperture having a 10 nm diameter punctured in a metal film positioned at the center of a plasmonic bull's eye grating. A considerable directive emission of transmitted light with a divergence angle of 5.7 degrees was observed at $10{\mu}m$ from the nanohole opening at the frequency of surface plasmon polariton excitation, an confirmed by measuring the distance dependent transmission amplitude. Observations of the electric field in cross-sectional, near-field, and far-field views near-field enhancement associated with the surface plasmon excitation, and the interference of the electric field light through the nanohole in the near-field region is responsible for such a considerable directive emission.

Field emission from non-conjugated polymers

  • Ionov, A.N.;Popov, E.O.;Svetlichnyi, V.M.;Nikolaeva, M.N.;Pashkevich, A.A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.931-932
    • /
    • 2004
  • We investigated a great number of polymer materials. The parameters affecting on its emission properties (namely, film thickness, temperature of polymer preparation. metal substrates and so on) were studied. We observed that emission distributed overfull polymer surface, with current densities up to several hundreds ${\mu}A/cm^2$. Some polymer samples have shown high current emission properties up to 50 ${\mu}A$ in DC and more then 1.5 mA in sinusoidal regimes.

  • PDF

갈륨이 첨가된 산화아연막의 코팅에 따른 미세팁 구조 탄소나노튜브의 전계방출 특성 및 장시간 안정성 (Field-emission Properties and Long-term Stability of Tip-type Carbon Nanotubes Coated with Gallium-incorporated Zinc Oxide Films)

  • 김종필;노영록;조경철;이상렬;박진석
    • 반도체디스플레이기술학회지
    • /
    • 제8권4호
    • /
    • pp.65-69
    • /
    • 2009
  • Carbon nanotubes (CNTs) were coated with undoped zinc oxide (ZnO) or 5 wt% gallium-incorporated ZnO (GZO) using various deposition conditions. The CNTs were directly grown on conical-type tungsten substrates at $700^{\circ}C$ using inductively coupled plasma-chemical vapor deposition. The pulsed laser deposition technique was used to deposit the ZnO and GZO thin films with very low stress. Field-emission scanning electron microscopy and high-resolution transmission electron microscopy were used to monitor the variations in the morphology and microstructure of CNTs prior to and after ZnO or GZO coating. The formation of ZnO and GZO films on CNTs was confirmed using energy-dispersive x-ray spectroscopy. In comparison to the as-grown (uncoated) CNT emitter, the CNT emitter that was coated with a thin (10 nm) GZO film showed remarkably improved field emission characteristics, such as the emission current of $325\;{\mu}A$ at 1 kV and the threshold field of $1.96\;V/{\mu}m$ at $0.1\;{\mu}A$, and it also exhibited the highly stable operation of emission current up to 40 h.

  • PDF

기능성 재료를 사용한 콘크리트의 특성에 관한 연구 (A Research for the Property of the Concrete Using Functional Materials)

  • 이종찬
    • 한국건설순환자원학회논문집
    • /
    • 제2권2호
    • /
    • pp.93-100
    • /
    • 2006
  • Building materials are trending toward environmental materials nowadays and the market share of those is growing. So those researches and developments for environmental property are proceeding now. The main properties of environmental products are far infrared emission, negative ion emission, electro magnetic wave shielding, and anti fungus, these products are used with shape of mortar, and spray on the finish material. But There are not much researches for the concrete, main material in construction field, with those functional properties. So in this research we evaluated slump, compressive strength and air content as basic properties for concrete using functional materials of sericite, wood pattern sand stone, carbon black and nanometric silver solution and functional properties like far infrared emission, negative ion emission, electro magnetic wave shielding, and anti fungus. The results were as follows. The most useful material in the functional materials was carbon black. Sericite and nanometric silver solution had a little effect on functional property, so it was difficult to apply to concrete, and wood pattern sand stone had a high functional property but low compressive strength, can be applied to a factory product. Anti fungus of the concrete using nanometric silver solution was not clear but if those specimens were aged in $CO_2$ gas for a long time it might apparent.

  • PDF

Statistical study of turbulence from polarized synchrotron emission

  • Lee, Hyeseung;Cho, Chungyeon;Lazarian, Alexandre
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.56.1-56.1
    • /
    • 2017
  • When turbulent motions perturb magnetic field lines and produce magnetic fluctuations, the perturbations leave imprints of turbulence statistics on magnetic field. Observation of synchrotron radiation is one of the easiest ways to study turbulent magnetic field. Therefore, we study statistical properties of synchrotron polarization emitted from media with magnetohydrodynamic (MHD) turbulence, using both synthetic and MHD turbulence simulation data. First, we obtain the spatial spectrum and its derivative with respect to wavelength of synchrotron polarization arising from both synchrotron radiation and Faraday rotation. The study of spatial spectrum shows how the spectrum is affected by Faraday rotation and how we can recover the statistics of underlying turbulent magnetic field as well as turbulent density of electrons from interferometric observations that incorporate the effects of noise and finite telescopic beam size. Second, we study quadrupole ratio to quantitatively describe the degree of anisotropy introduced by magnetic field in the presence of MHD turbulence. We consider the case that the synchrotron emission and Faraday rotation are spatially separated, as well as the situation that the sources of the synchrotron radiation and thermal electrons causing Faraday rotation exist in the same region. In this study, we demonstrate that the spectrum and quadrupole ratio of synchrotron polarization can be very informative tools to get detailed information about the statistical properties of MHD turbulence from radio observations of diffuse synchrotron polarization.

  • PDF

Enhanced Electron Emission of Carbon Nanotube Arrays Grown Using the Resist-Protection-assisted Positioning Technique

  • Ryu, Je-Hwang;Kim, Ki-Seo;Yu, Yi-Yin;Lee, Chang-Seok;Lee, Yi-Sang;Jang, Jin;Park, Kyu-Chang
    • Journal of Information Display
    • /
    • 제9권4호
    • /
    • pp.30-34
    • /
    • 2008
  • Field emitter arrays (FEAs) were developed using carbon nanotubes (CNTs) as electron emission sources. The CNTs were grown using a selective-positioning technique with a resist-protection layer. The light emission properties were studied through the electron emission of the CNTs on patterned islands, which were modulated with island diameter and spacing. The electron emission of CNT arrays with $5{\mu}m$ diameters and $10{\mu}m$ heights increased with increased spacing (from $10{\mu}m$ to $40{\mu}m$). The electron emission current of the $40-{\mu}m$-island-spacing sample showed a current density of 1.33 mA/$cm^2$ at E = 11 V/${\mu}m$, and a turn-on field of 7 V/${\mu}m$ at $1{\mu}A$ emission current. Uniform electron emission current and light emission were achieved with $40{\mu}m$ island spacing and $5{\mu}m$ island diameter.