• Title/Summary/Keyword: field emission properties

Search Result 865, Processing Time 0.028 seconds

Field emission properties of the silicon field emission arrays coated with diamond-like carbon film prepared by filtered cathodic vacuum arc technique (진공아크방전으로 제작된 다이아몬드상 탄소 박막이 코팅된 실리콘 전계 방출 소자의 전계 방출 특성)

  • 황한욱;김용상
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.4
    • /
    • pp.326-331
    • /
    • 2000
  • We have fabricated the field emitter arrays coated with diamond-like carbon (DLC) films that improved the field emission characteristics. The nitrogen doped DLC films are prepared by the filtered cathodic vacuum are (FCVA) tehnique. The activation energy of the nitrogen doped DLC films are derived from electrical conductivity measurements. The silicon field emission arrays (FEAs) were prepared by the VLSI technique. The turn-on field was rapidly decreasing and the emission current was remarkably increasing the DLC-coated FEAs than the non-coated silicon FEAs. In the nitrogen doped FEAs, the turn-on field decreased and the emission current increased with increasing the nitrogen found out the field emission current and the work function of the DLC-coated FEAs was remarkably decreased than that of the non-coated silicon FEAs. As nitrogen doping concentrations are increased the work function of FEAs is decreased and the field emission properties are improved in nitrogen doped DLC-coated FEAs. This phenomenon in due the fact that the Fermi energy level moves to the conduction band by increasing nitrogen doping concentration.

  • PDF

Field Electron Emission from Amorphous Carbon Thin Film Grown Using Rf Magnetron Sputtering Method (RF 마그네트론 스퍼터링법으로 성장된 Amorphous carbon 각막의 전계전자방출)

  • ;;K. Oura
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.3
    • /
    • pp.234-240
    • /
    • 2001
  • Using RF magnetron sputtering, amorphous carbon(a-C) thin films as electron filed emitter were fabricated. these a-C thin films were deposited on Si(001) substrate at several temperatures. The field electron emission property of these a-C thin films was estimated by a diode technique. As the result, we observed that the field emission properties of the films were changed singnificantly with the substrate temperature and structural features of a-C film. The field emission properties were promoted by higher substrate temperatures. Furthermore N-doped a-C film exhibits more field emission property than that of undoped a-C film. These results are explained as change of surface morphology and structural properties of a-C film.

  • PDF

Field emission properties of expanded graphite composite

  • Alegaonkar, P.S.;Park, J.H.;Jeon, S.Y.;Shin, J.H.;Berdinsky, A.S.;Yoo, J.B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.775-777
    • /
    • 2007
  • Field emission properties of expanded graphite composite have been studied. Composite has been synthesized via shear mixing expanded graphite in ${\alpha}-terpineol$ and ethyl cellulose. Field emission properties, of screen printed composite has been measured at a static applied electric field. The details of the analysis have been presented.

  • PDF

Effect of CNT Particle Dispersion in CNT Paste on Field Emission Characteristics in Carbon Nanotube Cathode (탄소나노튜브의 분산이 탄소나노튜브 캐소드의 전계방출 특성에 미치는 영향)

  • Ahn B. G.;Seung M. S.;Shin H. Y.;Kim D. H.;Kim T. S.;Cho Y. R.
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.807-812
    • /
    • 2004
  • The uniformity of emission mage and field emission properties of carbon nanotube(CNT) cathodes dependence on CNT particle dispersion were investigated for field emission displays. We used multi-walled carbon nanotubes (MWNTs) synthesized by CVD method as the field emitter materials. CNT dispersion in CNT ink was carried out by ultrasonication and shaking methods. According to CNT dispersion conditions, the uniformity of emission image and field emission properties of CNT cathodes were greatly affected. The smaller particles of filler materials and CNT powders provide the better properties of the CNT cathodes.

Effects of Interlayer Formation and Thermal Treatment on Field-emission Properties of Carbon Nanotube Micro-tips (계면층 형성 및 열처리가 탄소 나노튜브 미세팁의 전계방출 특성에 미치는 영향)

  • Kim, Bu-Jong;Park, Jin-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • The effects of interlayer formation and thermal treatment on the field-emission properties of carbon nanotubes (CNTs) were investigated. The CNTs were prepared on tungsten (W) micro-tip substrates using the electrophoretic deposition (EPD) method. The interlayers, such as aluminum (Al) and hafnium (Hf) were coated on the W-tips prior to CNT deposition and after the deposition of CNTs all the species were thermally treated at $700^{\circ}C$ for 30 min. The field-emission properties of CNTs were significantly improved by thermal treatment. The threshold electric field for igniting the electron emission was decreased and the emission current was increased. The Raman spectroscopy results indicated that this was attributed mainly to the enhancement of CNTs by thermal treatment. Also, the CNTs deposited on the interlayers showed the remarkably improved results in the long-term emission stability, especially when they were thermally treated. The X-ray photoelectron spectroscopy (XPS) measurement confirmed that this was resulted from the formation of the additional cohesive forces between the CNTs and the underlying interlayers.

Electron Emission from $Pb(Zr_xTi_{1-x})O_3$ Ferroelectrics by Pulsed Electric Field (펄스 전기장에 의한 $Pb(Zr_xTi_{1-x})O_3$ 강유전체의 전자 방출)

  • 김용태;윤기현;김태희;박경봉;곽상희
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.6-11
    • /
    • 2000
  • Electron emission from the Pb(ZrxTi1-x)O3 ferroelectrics by pulsed electric field has been investigated as a function of Zr/Ti ratios such as 35/65, 50/50 and 65/35 below 250kV/cm. Electrons were emitted regardless of the applied field polarity to the rear electrode. When the negative field was applied to the rear electrode, the electron emission charge was more stable. It was proved that the electrons were emitted at the edge of the upper electrode. The emission charge increased in order of 65/35>50/50>35/65. The electron emission characteristics were dependent on the ferroelectric properties such as polarization and coercive field. The emission charge and emission threshold field were affected by the polarization change and the coercive field, respectively. This result explains that the electron emission is a field emission with polarization induced surface potential by a modified Fowler-Nordheim plot of emission charge.

  • PDF

Enhancement of Field Emission Characteristics of CuO Nanowires Formed by Wet Chemical Process (습식공정으로 형성된 구리산화물 나노와이어의 전계방출특성 향상)

  • Sung Woo-Yong;Kim Wal-Jun;Lee Seung-Min;Lee Ho-Young;Park Kyung-Ho;Lee Soonil;Kim Yong-Hyup
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.313-318
    • /
    • 2004
  • Vertically-aligned and uniformly-distributed CuO nanowires were formed on copper-coated Si substrates by wet chemical process, immersing them in a hot alkaline solution. The effects of hydrogen plasma treatment on the field emission characteristics of CuO nanowires were investigated. It was found that hydrogen plasma treatment enhanced the field emission properties of CuO nanowires by showing a decrease in turn-on voltage, and an increase in emission current density, and stability of current-voltage curves. However, the excessive hydrogen plasma treatment made the I-V curves unstable. It was confirmed by XPS (X-ray Photoelectron Spectroscopy) analysis that hydrogen plasma treatment deoxidized CuO nanowires, thereby the work function of the nanowires decreased from 4.35 eV (CuO) to 4.1 eV (Cu). It is thought that the decrease in the work function enhanced the field emission characteristics. It is well-known that the lower the work function, the better the field emission characteristics. The results suggest that the hydrogen plasma treatment is very effective in achieving enhanced field emission properties of the CuO nanowires, and there may exist an optimal hydrogen plasma treatment condition.

RF power dependence on field emission property from carbon thin film grown by PECVD (PECVD에 의해 작성된 탄소계 박막의 전계전자방출특성에 대한 RF power 의존성에 관한 연구)

  • ;;K. Oura
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.519-523
    • /
    • 2000
  • Using plasma-enhanced chemical vapor deposition (PECVD), carbon thin film as electron field emitter were fabricated. These carbon thin film were deposited on Si(100) substrate at several RF power. These film were estimated by raman spectroscopy, scanning electron microscopy, and field emission. The field electron emission property of these carbon thin film was estimated by a diode technique. As the result, we observed that the field emission properties of these films were promoted by higher RF power. These results are explained as change of surface morphology and structural properties of carbon thin film

  • PDF

Fabrication and Field Emission Properties of Dot-patterned CNT Emitters using Mechanically Dispersed Photosensitive CNT paste (기계적 분산 처리한 CNT 페이스트의 제조와 Dot 패턴된 에미터의 전계방출 특성)

  • Lee, Han-Sung;Jeon, Ji-Hyeon;Kim, Jin-Hee;Goak, Jeung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.450-451
    • /
    • 2007
  • Dot-patterned carbon nanotube (CNT) emitters with excellent field emission properties were fabricated using photosensitive CNT paste. We carried out a parametric study on the compositions and the fabrication processes of the paste, in particular, by ball milling CNTs, which were optimized in terms of dot shapes and their field emission characteristics. The ball milling process improved the field emission current of the dot-patterned CNT emitters several times higher than that of the non-milled paste.

  • PDF

Pulse electric field-excited electron emission from Pb$(Zr_xTi_{1-x})O_3$ ceramics prepared by conventional solid state reaction (고상 반응법에 의해 제조된 Pb$(Zr_xTi_{1-x})O_3$ 세라믹스에서 펄스 전계에 의한 전자 방출)

  • Kwak, Sang-Hee;Kim, Tae-Heui;Park, Kyung-Bong;Kim, Chang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1867-1869
    • /
    • 1999
  • Pulse electric field induced electron emission from ferroelectrics has been studied with Pb$(Zr_xTi_{1-x})O_3$ ceramics with varying Zr/Ti ratio from 35/65 to 65/35, Electron emission was proved to be concentrated on the electrode edge by emission profile test and emission capture photographs. The 65/35 composition showed largest emission charge in lowest field and lowest emission threshold field. The emission characteristics are closely dependent on their ferroelectric properties in hysteresis curve. Electron emission charge increases with the polarization charge and emission threshold voltage is dependent on coercive field regardless of their composition. But dielectric constant has little relation with emission property. Electron emission charge increases exponentially with pulse electric field irrespective of composition. On the assumption that the surface potential is linear with the pulse electric field, electron emission can be regarded as a field emission at the electrode edge using Fowler-Nordheim plot of ln$(Q_e/E_{fe})$ to $1/E_{fe}$.

  • PDF