• Title/Summary/Keyword: field emission properties

Search Result 864, Processing Time 0.046 seconds

Coating of amorphous nitrides on carbon nanotubes and field emission properties (탄소 나노튜브에 대한 비정질 질화막의 코팅 및 전계방출 특성)

  • Noh, Young-Rok;Kim, Jong-Pil;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1244_1245
    • /
    • 2009
  • Coating of amorphous nitride thin layers, such as boron nitride (BN) and carbon nitride (CN), has been performed on carbon nanotubes (CNTs) for the purpose of enhancing their electron-emission performances because those nitride films have relatively low work functions and commonly exhibit negative electron affinity behavior. The CNTs were directly grown on metal-tip (tungsten, approximately 500 nm in diameter at the summit part) substrates by inductively coupled plasma-chemical vapor deposition (ICP-CVD). Sharpening of the tungsten tips were carried out by electrochemical etching. Morphologies and microstructures of BN and CN films were analyzed by field-emission scanning electron microscopy (FE-SEM), energy dispersive x-ray (EDX) spectroscopy, and Raman spectroscopy. The electron-emission properties (such as maximum emission currents and turn-on fields) of the BN-coated and CN-coated CNT-emitters were characterized in terms of the thickness of BN and CN layers.

  • PDF

EL Devices for LCD Backlight Based on ZnS:Cu Phosphor (혼합파우더 및 절연박막층을 이용한 PELD의 광학특성)

  • 박수길;조성렬;전세호;엄재석;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.391-394
    • /
    • 1998
  • Electroluminescence is the light emission obtained by an electrical excitation energy passing through a phosphor under an applied high electrical field. EL are paid much attention on flat panel display as a backlight and indicator, which are divided into ACPRL(alternating-current powder electroluminescent) and ACTFEL(alternating-current powder electroluminescent). In this paper, Electric and emission properties on ACPEL are investigated based on ZnS:Cu phosphor. The basic structure on this is ITO glass/phosphor/insulator/ backelectrode, CR-M which has high efficiency on thermal properties and dielectric Properties was introduced and BaTiO$_3$ as a insulating layer in order to increase app1ied electric field on phosphor. Changing on Dielectric and emission Properties was caused by a different viscosity of binder which filled on space between phosphor particle. 60cd/$m^2$ under 60V, 2kHz sinusoidal was gotten from ACPELD prepared in this work.

  • PDF

Comparison of stabilities in carbon nanotubes grown on a submicron-sized tip in terms of various buffer and catalyst materials (미세크기 팁 위에 성장된 탄소 나노튜브의 완충막 및 촉매 금속에 따른 안정성 비교)

  • Kim, Jong-Pil;Kim, Young-Kwang;Park, Chang-Kyun;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1224-1225
    • /
    • 2008
  • The results of the experiment that was conducted on the electron emission property and the long-term stability of the emission current in various carbon nanotubes (CNTs)-based field emitters with a CNT/catalyst/buffer/W-tip configuration are presented herein. CNT-based field emitters were fabricated by varying the (TiN, Al/Ni/TiN) buffer layer and the (Ni, Co) catalyst material. This study aimed to elucidate how the buffer layers and catalyst materials affect the structural properties of CNTs and the long-term stability of CNT emitters. Raman spectroscopy, field emission SEM, and high-resolution TEM were used to analyze the crystalline structure, surface morphologies, and nanostructures of all the grown CNTs. X-ray photoelectron spectroscopy (XPS) was used to monitor the chemical bonds of all the buffer layers and catalysts. Electron emission measurement and a long-term (up to 40h) stability test were carried out using a compactly designed field emission measurement system.

  • PDF

Fabrication of New Silicided Si Field Emitter Array with Long Term Stability (실리사이드를 이용한 새로운 고내구성 실리콘 전계방출소자의 제작)

  • Chang, Gee-Keun;Yoon, Jin-Mo;Jeong, Jin-Cheol;Kim, Min-Young
    • Korean Journal of Materials Research
    • /
    • v.10 no.2
    • /
    • pp.124-127
    • /
    • 2000
  • A new triode type Ti-silicided Si FEA(field emitter array) was realized by Ti-silicidation of Ti coated Si FEA and its field emission properties were investigated. In the fabricated device, the field emission properties through the unit pixel with $200{\mu\textrm{m}}{\times}200{$\mu\textrm{m}}$ tip array in the area of $1000{\mu\textrm{m}}{\times}1000{$\mu\textrm{m}}$ were as follows : the turn-on voltage was about 70V under high vacuum condition of $10^8Torr$, and the field emission current and steady state current degradation were about 2nA/tip and 0.3%/min under the bias of $V_A=500V\;and\;V_G=150V$. The low turn-on voltage and the high current stability during long term operation of the Ti silicided Si FEA were due to the thermal and chemical stability and the low work function of silicide layer formed at the surface of Si tip.

  • PDF

Fabrication of New Co-Silicided Si Field Emitter Array with Long Term Stability (Co-실리사이드를 이용한 새로운 고내구성 실리콘 전계방출소자의 제작)

  • Chang, Gee-Keun;Kim, Min-Young;Jeong, Jin-Cheol
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.301-304
    • /
    • 2000
  • A new triode type Co-silicided Si FEA(field emitter array) was realized by Co-silicidation of Co coated Si FEA and its field emission properties were investigated. The field emission properties of the fabricated device through the unit pixel with $45{\times}45$ tip array in the area of $250{\mu\textrm{m}}{\times}250{\mu\textrm{m}}$ under high vacuum condition of $10^{-8}Torr$ were as follows : the turn-on voltage was about 35V and the anode current was about $1.2\mu\textrm{A}(0.6㎁/tip)$ at the bias of $V_A=500V\;and\; V_G=55V$. The fabricated device showed the stable electrical characteristics without degradation of field emission current for the long term operation except for the initial transient state. The low turn-on voltage and the high current stability of the Co-silicided Si FEA were due to the thermal and chemical stability and the low work function of silicide layer formed at the surface of Si tip.

  • PDF

Decrease of Gate Leakage Current by Employing AI Sacrificial Layer in the DLC-coated Si-tip FEA Fabrication (DLC-coated Si-tip FEA 제조에 있어서 Al 희생층을 이용한 게이트 누설 전류의 감소)

  • Ju, Byeong-Kwon;Lee, Sangjo;Kim, Hoon;Lee, Yun-Hi;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.577-579
    • /
    • 1999
  • DLC film remaining on device surface could be removed by eliminating AI sacrificial layer as a final step of lift-off process in the fabrication of DLC-coated Si-tip FEA. The field emission properties(I-V curves, hysteresis, and current fluctuation etc.) of the processed device were analyzed and the process was employed to 1.76 inch-sized FEA panel fabrication in order to evaluate its FED applicability.

  • PDF

Field Emission Characteristics a-C:F:N Film Deposited by Inductively Coupled Plasma Chemical Vapor Deposition

  • Jae, Chung-Suk;Jung, Han-Eun;Jang Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.134-139
    • /
    • 1998
  • Amorphous fluorocarbon (a-C:F) is of interest for low dielectric interlayer material, but in this work we applied this material to FED field emitter. N-doped a-C:F films were deposited by inductively coupled plasma chemical vapor deposition (ICPCVD). The Raman spectra were measured to study the film structure and inter-band optical absorption coefficients were measured using Perkin-Elmer UV-VIS-IR spectrophotometer and optical band gap was obtained using Tauc's plot. XPS spectrum and AFM image were investigated to study bond structure and surface morphology. Current-electric field(I-E) characteristic of the film was measured for the characterization of electron emission properties. The optimum doping concentration was found to be [N2]/[CF4]=9% in the gas phase. The turn-on field and the emission current density at $[N_2]/[CF_4]$=9% were found to be 7.34V/$\mu\textrm{m}$ and 16 $\mu\textrm{A}/\textrm{cm}^2$ at 12.8V/$\mu\textrm{m}$, respectively.

  • PDF

Effect of Liquid Surface Treatments on Field Emission Properties of Carbon Nanotube Cathodes

  • Lee, Ji-Eon;An, Young-Je;Shin, Heon-Cheol;Chung, Won-Sub;Cho, Young-Rae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.486-489
    • /
    • 2007
  • Carbon nanotube (CNT) cathodes having a trench structure similar to the structure of the gated triodetype cathode were successfully fabricated by a screenprinting method with multi-walled carbon nanotubes. We observed that a liquid method not only readily removes the organic residues on the CNT films, but also satisfactorily protrudes the CNTs out of the electrode surface. The CNT cathodes prepared by the liquid method showed a turned-on field of $1.4\;V/{\mu}m$. The emission current density of them was about $3.1\;mA/cm^2$ at the electric field of $3\; V/{\mu}m$. The liquid method appears to be a promising surface treatment of CNT cathode for gated triode-type FEDs applications.

  • PDF

Characterization of field emission behavior from vitreous carbon (유리화 비정형 탄소의 전계방출 거동)

  • 안상혁;이광렬;은광용
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.122-129
    • /
    • 2000
  • Field emission behavior from vitreous carbon powders deposited on Mo coated glass by electro-phoretic method was investigated. Although the vitreous carbon has only $sp^2$ hybridized carbon bond, we could observe an excellent field emission behavior. Reproducible electron emission was observed without initiation process which is known to be needed in most carbon cathode materials. Critical electric field for electron emission was in the range from 3 to 4 MV/m. The effective work function was estimated to be about 0.06 eV, as obtained from the slope of Fowler-Nordheim plot. The stability of the emission behavior characterized by repeated I-V measurements, was much superior to the Si tips. We observed the possibility of full area light emission in vitreous carbon materials. This results showed that the field emission is not intimately related to the $sp^3$ hybridization of carbon, but the electrical properties of cathod/electrode interface or the conductivity of the cathode materials which required for the electron transport to the cathode surface.

  • PDF

Field Emission Characteristics of Nitrogen-Doped and Micro-Patterned Diamond-Like Carbon Films Prepared by Pulsed Laser Deposition

  • Shin, Ik-Ho;Lee, Taek-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.133-134
    • /
    • 2000
  • Effect of nitrogen doping on field emission characteristics of patterned Diamond-like Carbon (DLC) films was studied. The patterned DLC films were fabricated by the method reported previously[1]. Nitrogen doping in DLC film was carried out by introducing $N_2$ gas into the vacuum chamber during deposition. Higher emission current density of $0.3{\sim}0.4$ $mA/cm^2$ was observed for the films with 6 at % N than the undoped films but the emission current density decreased with further increase of N contents. Some changes in CN bonding characteristics with increasing N contents were observed. The CN bonding characteristics which seem to affect the electron emission properties of these films were studied by Raman spectroscopy, x-ray photoemission spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). The electrical resistivity and the optical band gap measurements showed consistence with the above analyses.

  • PDF