• Title/Summary/Keyword: field cooling

Search Result 643, Processing Time 0.034 seconds

Non-gaseous Plasma Immersion Ion Implantation and Its Applications

  • Han, Seung-Hee;Kim, En-Kyeom;Park, Won-Woong;Moon, Sun-Woo;Kim, Kyung-Hun;Kim, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.151-151
    • /
    • 2012
  • A new plasma process, i.e., the combination of PIII&D and HIPIMS, was developed to implant non-gaseous ions into materials surface. HIPIMS is a special mode of operation of pulsed-DC magnetron sputtering, in which high pulsed DC power exceeding ~1 kW/$cm^2$ of its peak power density is applied to the magnetron sputtering target while the average power density remains manageable to the cooling capacity of the equipment by using a very small duty ratio of operation. Due to the high peak power density applied to the sputtering target, a large fraction of sputtered atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed plasma of sputtered target material by HIPIMS operation, the implantation of non-gaseous ions can be successfully accomplished. The new process has great advantage that thin film deposition and non-gaseous ion implantation along with in-situ film modification can be achieved in a single plasma chamber. Even broader application areas of PIII&D technology are believed to be envisaged by this newly developed process. In one application of non-gaseous plasma immersion ion implantation, Ge ions were implanted into SiO2 thin film at 60 keV to form Ge quantum dots embedded in SiO2 dielectric material. The crystalline Ge quantum dots were shown to be 5~10 nm in size and well dispersed in SiO2 matrix. In another application, Ag ions were implanted into SS-304 substrate to endow the anti-microbial property of the surface. Yet another bio-application was Mg ion implantation into Ti to improve its osteointegration property for bone implants. Catalyst is another promising application field of nongaseous plasma immersion ion implantation because ion implantation results in atomically dispersed catalytic agents with high surface to volume ratio. Pt ions were implanted into the surface of Al2O3 catalytic supporter and its H2 generation property was measured for DME reforming catalyst. In this talk, a newly developed, non-gaseous plasma immersion ion implantation technique and its applications would be shown and discussed.

  • PDF

A facile synthesis of transfer-free graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Jang, Seong Woo;Hwang, Sehoon;Yoon, Jung Hyeon;Lim, Sang-Ho;Han, Seunghee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.129-129
    • /
    • 2016
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which needs transfer to desired substrates for various applications. However, the transfer steps are not only complicated but also inevitably induce defects, impurities, wrinkles, and cracks of graphene. Furthermore, the direct synthesis of graphene on dielectric surfaces has still been a premature field for practical applications. Therefore, cost effective and concise methods for transfer-free graphene are essentially required for commercialization. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer. In order to fabricate 100 nm thick NiC layer on the top of $SiO_2/Si$ substrates, DC reactive magnetron sputtering was performed at a gas pressure of 2 mTorr with various Ar : $CH_4$ gas flow ratio and the 200 W DC input power was applied to a Ni target at room temperature. Then, the sample was annealed under 200 sccm Ar flow and pressure of 1 Torr at $1000^{\circ}C$ for 4 min employing a rapid thermal annealing (RTA) equipment. During the RTA process, the carbon atoms diffused through the NiC layer and deposited on both sides of the NiC layer to form graphene upon cooling. The remained NiC layer was removed by using a 0.5 M $FeCl_3$ aqueous solution, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. In order to confirm the quality of resulted graphene layer, Raman spectroscopy was implemented. Raman mapping revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Additionally, sheet resistance and transmittance of the produced graphene were analyzed by a four-point probe method and UV-vis spectroscopy, respectively. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

An Analysis of Importance and Requirement Factors in the aspect of Facility Manager for Correctional Facility (교정시설에 대한 시설관리자 측면의 요구사항 도출 및 중요도 분석)

  • Cheon, Je-Hong;Kang, Min-Goo;Kim, Min-Seok;Hwang, Uk-Sun;Kim, Yong-Su
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.3
    • /
    • pp.25-33
    • /
    • 2012
  • The purpose of this study is an analysis of importance and requirement factors in the aspect of facility manager for correctional facility. For this study, It limited ranges of study in 11 correctional facilities that have been completed after 2000 years. It had survey and interview with managers of correctional facilities that are selected for study and then it derived the requirement factors of correctional facilities. Based on those requirement factors, Importance analysis is performed by using AHP method. The result of this study are as follows: 1) The fields are divided into architecture, building finishing, machinery, electricity fields and it derives details of each field. 2) The results of importance on requirements of managers in correctional facilities are as follows. Planing of building arrangement (10.9%) in architecture, secure plan for soundproof partition (14.1%) in building finishing, isolation lining of heating and cooling system(11.9%) in machinery, and improvement of control system(12.2%) in electricity.

A Sensitivity Analysis of Design Parameters of an Underground Radioactive Waste Repository Using a Backpropagation Neural Network (Backpropagation 인공신경망을 이용한 지하 방사성폐기물 처분장 설계 인자의 민감도 분석)

  • Kwon, S.;Cho, W.J.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.203-212
    • /
    • 2009
  • The prediction of near field behavior around an underground high-level radioactive waste repository is important for the repository design as well as the safety assessment. In this study, a sensitivity analysis for seven parameters consisted of design parameters and material properties was carried out using a three-dimensional finite difference code. From the sensitivity analysis, it was found that the effects of borehole spacing, tunnel spacing, cooling time and rock thermal conductivity were more significant than the other parameters. For getting a statistical distribution of buffer and rock temperatures around the repository, an artificial neural network, backpropagation, was applied. The reliability of the trained neural network was tested with the cases with randomly chosen input parameters. When the parameter variation is within ${\pm}10%$, the prediction from the network was found to be reliable with about a 1% error. It was possible to calculate the temperature distribution for many cases quickly with the trained neural network. The buffer and rock temperatures showed a normal distribution with means of $98^{\circ}C$ and $83.9^{\circ}C$ standard deviations of $3.82^{\circ}C$ and $3.67^{\circ}C$, respectively. Using the neural network, it was also possible to estimate the required change in design parameters for reducing the buffer and rock temperatures for $1^{\circ}C$.

Petrological Characteristics of the Daejeonsa Basalt in the Mt. Juwang area, Cheongsong-gun, Gyeongsang but-do, Korea (경북 청송군 주왕산지역의 대전사 현무암의 암석학적 특성)

  • Koh, Jeong-Seon;Ahn, Ji-Young;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.21 no.5
    • /
    • pp.553-562
    • /
    • 2000
  • Daejeonsa basalt in the Mt. Juwang area is composed of 12 lava flows alternate with 9 peperites, and each lava and peperite has variable thickness. Globular peperites yielded in Daejeonsa basalt are mixed basalt clasts with reddish shale. Based on field description, when lava flows over unconsolidated wet shale or injectes into unconsolidated wet shale, peperites were formed at the contacts between lava and shale. Daejeonsa basalt are massive lava flows with rare vesicules: some vesicules are found in upper part of a flow unit. The basalt has mainly pseudomorphs of olivine as phenocryst, and also plagioclase and clinopyroxene phenocrysts in rocks with higher Mg-number. Matrix is mainly subophitic texture, sometimes showing ophitic and intergranular textures due to different cooling rate. Clinopyroxene is augite(Wo$_{41.6}$En$_{45.1}$Fs$_{13.3}$), and plagioclase is mostly labradorite(An$_{55.0}{\sim}_{67.7}$), but some is andesine(An$_{44.3}$) and bytownite(An$_{74.5}$). Oxide minerals are composed of titanomagnetite and ilmenite.

  • PDF

Study on the Standardization of a Surveillance Culture Laboratory in Infection Control Fields (감염관리 분야에서 감시배양검사의 표준화 연구)

  • Park, Chang-Eun;Jeong, Na-Yeon;Yang, Min-Ji;Kim, Han-Wool;Joo, Sei-Ick;Kim, Keon-Han;Seong, Hee-Kyung;Hwang, Yu-Yean;Lim, Hyun-Mi;Son, Jae-Cheol;Yoon, Sun-Han;Yoon, Nam-Seob;Jang, In-Ho
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.50 no.3
    • /
    • pp.359-369
    • /
    • 2018
  • An essential measure to prevent healthcare-associated infections (HAI) is to develop a consistent system of surveillance, thereby promoting a reliable situation diagnosis to perform efficient control for the problem. Patient-to-patient transmission of pathogens within the hospital plays a substantial role in the epidemiology of HAIs. Contamination of healthcare environments commonly occurs, including facilities surfaces (e.g., bed rails, bedside tables), drinking water, cooling tower water, endoscopic instruments, food, airborne, endotoxin test, sterile test and medical equipment, with pathogenic organisms. In addition, epidemiological analysis is performed by multi locus sequence tying, pulsed-field gel electrophoresis for active surveillance. Therefore, an environmental surveillance culture test for prevention improves patient safety and blocks infection agents. Effective infection control and increased safety are possible by controlling the national infection control system. In conclusion, this study contributes to an effective infection control system through the standardization of active surveillance culture laboratory and secure expertise as infection control specialist. The primary objective of the standardization is to improve the safety of the nation's healthcare system by reducing the rates of HAIs.

Design of a SQUID Sensor Array Measuring the Tangential Field Components in Magnetocardiogram (심자도용 접선성분자장 측정방식 스퀴드 센서열 설계)

  • Kim K.;Lee Y. H;Kwon H;Kim J. M;Kim I. S;Park Y. K;Lee K. W
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.56-63
    • /
    • 2004
  • We consider design factors for a SQUID sensor array to construct a 52-channel magnetocardiogram (MCG) system that can be used to measure tangential components of the cardiac magnetic fields. Nowadays, full-size multichannel MCG systems, which cover the whole signal area of a heart, are developed to improve the clinical analysis with high accuracy and to provide patients with comfort in the course of measurement. To design the full-size MCG system, we have to make a compromise between cost and performance. The cost is involved with the number of sensors, the number of the electronics, the size of a cooling dewar, the consumption of refrigerants for maintenance, and etc. The performance is the capability of covering the whole heart volume at once and of localizing current sources with a small error. In this study, we design the cost-effective arrangement of sensors for MCG by considering an adequate sensor interval and the confidence region of a tolerable localization error, which covers the heart. In order to fit the detector array on the cylindrical dewar economically, we removed the detectors that were located at the corners of the array square. Through simulations using the confidence region method, we verified that our design of the detector array was good enough to obtain whole information from the heart at a time. A result of the simulation also suggested that tangential-component MCG measurement could localize deeper current dipoles than normal-component MCG measurement with the same confidence volume; therefore, we conclude that measurement of the tangential component is more suitable to an MCG system than measurement of the normal component.

  • PDF

Analytical and Numerical Model Study to Predict the Temperature Distribution Around an Underground Food Cold Storage Pilot Cavern (냉동저장 공동 주변의 온도분포 예측을 위한 해석해 및 수치모델 적용에 관한 연구)

  • 이대혁;김호영
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.142-151
    • /
    • 2002
  • Claesson(2001)'s analytical solution, and two numerical models with Dirichlet and Neuman interior boundary condition respectively were investigated to estimate the transient temperature distribution with distances from the Taejon underground food cold storage pilot cavern. Claesson's solution, which is based on constant temperature boundary condition at the rock wall during a temperature decline step, showed relatively good agreement with temperature measurements in the rock mass in order of average error difference, 0.89$\^{C}$ without any adjustments on laboratory thermal properties to represent the rock mass. For the numerical model with heat flux through the rock wall, a boundary condition setting technique was newly proposed to overcome the difficulty of prescribing variable convective heat tranfer coefficient and far-field air temperature inside the cavern as they may be certainly changed according to the cooling-down time. The results showed also good agreement with measurements in order of average error difference, 1.58$\^{C}$, and were compared to those of the numerical model with fixed temperature at the rock wall. Finally, the most proper procedure to precisely predict the temperature profile around a cavern was proposed as a series of analysis steps including an analytical exact solution and numerical models.

Preliminary Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Park, Chan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.102-102
    • /
    • 2014
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument onboard NEXTSat-1 which is being developed by KASI. The main scientific targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions in order to study the cosmic star formation history in local and distant universe. After the Preliminary Design Review, we have fixed major specifications of the NISS. The off-axis optical design with 15cm apertureis optimized to obtain a wide field of view ($2deg.{\times}2deg.$), while minimizing the sensitivity loss. The opto-mechanical structure of the NISS was designed to be safe enough to endure in the launching condition as well as the space environment. The tolerance analysis was performed to cover the wide wavelength range from 0.95 to $3.8{\mu}m$ and to reduce the degradation of optical performance due to thermal variation at the target temperature, 200K. The $1k{\times}1k$ infrared sensor is operated in the dewar at 80K stage. We confirmed that the NISS can be cooled down to below 200K in the nominal orbit through a radiative cooling. Here, we report the preliminary design of the NISS.

  • PDF

Analysis of New & Renewable Energy Application and Energy Consumption in Public Buildings (공공건축물의 신재생에너지 적용과 에너지 사용량 분석)

  • Lee, Yong-Ho;Seo, Sang-Hyun;Kim, Hyung-Jin;Cho, Young-Hum;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.153-161
    • /
    • 2012
  • This study conducted a survey and field investigation on the application of the Public Obligation System for new & renewable energy in public buildings, as well as energy consumption of each building according to their uses. The findings are as follows: (1) Since the introduction of the Public Obligation System (until June 30, 2011), there was average 1.4 new & renewable energy facilities established at 1,433 places. Preference for solar energy facilities was the highest at 57.8%. (2) The revised act sets the obligatory supply percentage of new & renewable energy for each public building: it is 9.0% for a tax office, 4.2% for a dong office, 8.2% for a public health center, and 12.6% for a fire station. All the public buildings except for fire stations failed to meet 10% expected energy consumption, a revised standard. (3) Energy consumption of each public building was 120.6TOE for a tax office, 124.3TOE for a dong office, 166.4TOE for a public health center, and 174.6TOE for a fire station. The energy consumption was comprised of 80% electric power, 18% urban gas, and 1% oil. (4) Electric power consumption per person in the room was high at a dong office, and fuel consumption per person in the room was high at a public health center. In addition, electric power consumption per unit space was high at a public health center, and fuel consumption per unit space was high at a fire station. (5) In all the four public buildings, power load had the highest basic unit percentage at average 55%, being followed by heating load (21.2%), cooling load (15%), and water heating load (7%). A tax office and fire station had 2% load due to cooking facilities.