• Title/Summary/Keyword: field coil

Search Result 802, Processing Time 0.031 seconds

Basic RF Coils Used in Multi-channel RF Coil and Its B1 Field Distribution for Magnetic Resonance Imaging System (자기공명영상 촬영 장치에서 다채널 RF Coil에 이용되는 기본 구조 RF Coil의 B1 Field 분석)

  • Kim, Yong-Gwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4891-4895
    • /
    • 2010
  • RF coil is an important component of the Magnetic Resonance Imaging (MRI) system and the performance of RF coil is one of major factors for high SNR images. Sensitivity and RF field uniformity are parameters for evaluating RF coil performance. Since the B1 field is induced by RF coil, MR signal is strongly affected by RF coil structure and arrangement. In receiving MR signal, the RF coil sensitivity to MR Signal is also determined by the induced B1 field of RF coil. Therefore, the spatial distribution of B1 field must be verified. In this work, we performed computer simulation of the basic RF coil structures using Matlab and verified their sensitivity and uniformity through their B1 field distribution. This work will be useful for the advanced multi-channel RF coil design.

Stability analysis of an insulationless HTS pancake coil under the magnitude of external magnetic field

  • Jung, Sung-Jun;Kim, Gyeong-Hun;Kim, Kwangmin;Park, Minwon;Yu, In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.41-45
    • /
    • 2012
  • An HTS (high temperature superconducting) coil without insulation has been investigated since a metallic insulation was suggested in the mid-1980s. The advantage of an insulationless HTS pancake coil is that it is more stable than an insulated HTS pancake coil. This paper focuses on the various characteristics of the insulationless HTS pancake coil related with stability, especially under the external magnetic field. Because HTS pancake coil may be influenced by the external magnetic field in a real operational environment of electrical devices. First, charge-discharge test was performed for the characteristics evaluation of the insulationless HTS pancake coil as compared with insulated HTS pancake coil in liquid nitrogen at 77 K. Based on the experiment results, characteristics evaluation of the insulationless HTS pancake coil was implemented under the external magnetic field. In order to carry out the experiment, we have fabricated a cylindrical solenoid coil to apply the magnetic field. The various characteristics of the insulationless HTS pancake coil were evaluated for charge-discharge and over-current conditions. This paper proves that the insulationless HTS pancake coil is more stable than the insulated HTS pancake under the external magnetic field.

Magnetic Field Gradient Optimization for Electronic Anti-Fouling Effect in Heat Exchanger

  • Han, Yong;Wang, Shu-Tao
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1921-1927
    • /
    • 2014
  • A new method for optimizing the magnetic field gradient in the exciting coil of electronic anti-fouling (EAF) system is presented based on changing exciting coil size. In the proposed method, two optimization expressions are deduced based on biot-savart law. The optimization expressions, which can describe the distribution of the magnetic field gradient in the coil, are the function of coil radius and coil length. These optimization expressions can be used to obtain an accurate coil size if the magnetic field gradient on a certain point on the coil's axis of symmetry is needed to be the maximum value. Comparing with the experimental results and the computation results using Finite Element Method simulation to the magnetic field gradient on the coil's axis of symmetry, the computation results obtained by the optimization expression in this article can fit the experimental results and the Finite Element Method results very well. This new method can optimize the EAF system's anti-fouling performance based on improving the magnetic field gradient distribution in the exciting coil.

Magnetic Field Analysis of the Field Coil for 10 MW Class Superconducting Wind Turbines (10 MW급 초전도 풍력발전기 계자코일 전자장 해석)

  • Kim, Ji-Hyung;Park, Sa-Il;Kim, Ho-Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.18-22
    • /
    • 2012
  • This paper presents the magnetic field analysis of the racetrack double pancake field coil for the 10 MW class superconducting wind turbine which is considered to be the next generation of wind turbines using the 3 Dimensional FEM(Finite Elements Method). Generally, the racetrack-shaped field coil which is wound by the second generation(2G) superconducting wire in the longer axial direction is used, because the racetrack-shaped field coil generates the higher magnetic field density at the minimum size and reduces the synchronous reactance. To analysis the performance of the wind turbines, It is important to calculate the distribution of magnetic flux density at the straight parts and both end sections of the racetrack-shaped high temperature superconductivity(HTS) field coil. In addition, Lorentz force acting on the superconducting wire is calculated by the analysis of the magnetic field and it is important that through this way Lorentz force can be used as a parameter in the mechanical analysis which analyzes the mechanical stress on the racetrack-shaped field coil.

Development of Micro-size Search Coil Magnetometer for Magnetic Field Distribution Measurement

  • Ka, E.M.;Son, De-Rac
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.34-36
    • /
    • 2008
  • For the measurement of the magnetic field distribution with high spatial resolution and high accuracy, the magnetic field sensing probe must be non-magnetic, but the MFM probe and sub-millimeter-meter size Hall probe use a ferromagnetic tip and block, respectively, to increase the sensitivity. To overcome this drawback, we developed a micro-size search coil magnetometer which consists of a single turn search coil, Terfenol-D actuator, scanning system, and control software. To reduce the noise generated by the stray ac magnetic field of the actuator driving coil, we employed an even function $\lambda$-H magnetostriction curve and lock-in technique. Using the developed magnetometer, we were able to measure the magnetic field distribution with a magnetic field resolution of 1 mT and spatial resolution of $0.1mm{\times}0.2mm$ at a coil vibration frequency of 1.8 kHz.

Comparison of superconducting generator with 2G HTS and MgB2 wires

  • Park, S.I.;Kim, J.H.;Le, T.D.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.48-52
    • /
    • 2013
  • This paper compares the features of second generation (2G) High Temperature Superconducting (HTS) field coil with those of magnesium diboride ($MgB_2$) field coil for a 10 MW class superconducting generator. Both coils can function effectively in their respective magnetic flux density range: 10-12 T for 2G HTS field coil, 2 T for $MgB_2$ superconducting field coil. Even though some leading researchers have been developing 10 MW class superconducting generator with 2G HTS field coil, other research groups have begun to focus on $MgB_2$ wire, which is more economical and suitable for mass production. However 2G HTS wire is still appealing in functions such as in-field property and critical temperature, it shows higher in-field property and critical temperature than $MgB_2$ wire.

A Study on Minimum Volume of Highly Homogeneous Superconducting Coil (균일자장 초전도코일의 체유최소화에 관한 연구)

  • 이승원;권영안
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.1
    • /
    • pp.38-43
    • /
    • 1985
  • Since the superconductor type II with high critical current and high critical magnetic field was discovered in 1961, there were many studies on the superconducting coil for high field and highly homogeneous field. The graphical method and the numerical method by Newton Raphson technique have been studied as the method for design of homogeneous superconducting coil. It is comparatively easy to get a compensating coil for any given main coil by the above methods, but it is too laborious to get a general solution for main coil dimension. This paper studies the optimal design method for minimum volume of superconducting coil under certain central field and highly homogeneous field. The present method makes use of the nonlinear programming for optimization. The optimal solution of NMR superconducting coils by this method are demonstrated very well.

  • PDF

Analysis on electrical and thermal characteristics of MI-SS racetrack coil under conduction cooling and external magnetic field

  • Chae, Yoon Seok;Kim, Ji Hyung;Quach, Huu Luong;Lee, Sung Hoon;Kim, Ho Min
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.61-69
    • /
    • 2021
  • This paper presents the analysis and experiment results on the electrical and thermal characteristics of metal insulation (MI) REBCO racetrack coil, which was wound with stainless steel (SS) tape between turn-to-turn layers, under rotating magnetic field and conduction cooling system. Although the field windings of superconducting rotating machine are designed to operate on a direct current, they may be subjected to external magnetic field due to the unsynchronized armature windings during electrical or mechanical load fluctuations. The field windings show the voltage and magnetic field fluctuations and the critical current reduction when they are exposed to an external magnetic field. Moreover, the cryogenic cooling conditions are also identified as the factors that affect the electrical and thermal characteristics of the HTS coil because the characteristic resistance changes according to the cryogenic cooling conditions. Therefore, it is necessary to investigate the effect of external magnetic field on the electrical and thermal characteristics of MI-SS racetrack coil for further development reliable HTS field windings of superconducting rotating machine. First, the major components of the experiment test (i.e., HTS racetrack coil construction, armature winding of 75 kW class induction motor, and conduction cooling system) were fabricated and assembled. Then, the MI racetrack coil was performed under liquid nitrogen bath and conduction cooling conditions to estimate the key parameters (i.e., critical current, time constant, and characteristic resistance) for the test coil in the steady state operation. Further, the test coil was charged to the target value under conduction cooling of 35 K then exposed to the rotating magnetic field, which was generated by three phrase armature windings of 75 kW class induction motor, to investigate the electrical and thermal characteristics during the transient state.

Design and Test of HTS Homopolar Motor Field coil (고온초전도 Homopolar 전동기용 계자코일의 설계 및 특성평가)

  • Lee, Jae-Deuk;Lee, Sang-Ho;Kim, Ho-Min;Lee, Eun-Yong;Baik, Seung-Kyu;Kwon, Young-Kil;Hong, Jung-Pyo;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.784-785
    • /
    • 2008
  • In general, in most case of high temperature superconducting (HTS) rotating machinery, HTS field coil is rotated. HTS homopolar motor field coil is nat necessary to be rotated and the torque of motor is not strongly related with the field coil. Therefore, HTS homopolar motor has a superior mechanical stability comparing with other HTS rotating machines. These advantages can make the design of HTS field coil and cryostat much more simple. In this paper, HTS field coil was fabricated and tested. Before test, authors habe estimated the critical current of HTS field coil at 77K by simulation using FEA (Finite Element Analysis) software and power law equation. The experiment details and results are presented in this paper, and discussed. The field windings are made with HTS Bi-2223 wire which operates at 77K.

  • PDF

A Study of Magnetic Field Characteristic of Field coil in HTS motor (HTS 전동기용 계자코일의 자장 특성 연구)

  • 이정종;조영식;홍정표;손명환;김석환;권영길
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.47-51
    • /
    • 2002
  • In this paper, flux distribution and operating current is calculated according to the field coil change in HTS(High Temperature Superconducting) motor. In order to calculate magnetic field characteristic of the field coil. it is computed by changing the outer radius and the inner width of field coil Bio-Savart equation is used as the analysis method for the characteristic analysis of magnet. 2D and 3D FEA(Finite Element Analysis) is used for the magnetic field distribution in HTS motor The operating current is calculated by $B{\bot}$ linked With the field coil and $I_c-B curve of superconductor.