• Title/Summary/Keyword: fibril

Search Result 123, Processing Time 0.026 seconds

Physicochemical Characteristics of ${\beta}-Glucan$ Isolated from Barley (보리로부터 분리한 ${\beta}-Glucan$의 이화학적 특성)

  • Kim, Sung-Ran;Choi, Hee-Don;Seog, Ho-Moon;Kim, Sung-Soo;Lee, Young-Tack
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1164-1170
    • /
    • 1999
  • The physicochemical characteristics of ${\beta}-glucan$ isolated from waxy and non-waxy barley were investigated. The hull-less waxy and non-waxy barley containing 6.5% and 5.3% of total ${\beta}-glucan$ respectively, were used as a starting material. The yield and ${\beta}-glucan$ content of crude ${\beta}-glucan$ from waxy barley was 5.54% and 62.9%, respectively, and those were higher than 3.34% and 59.2% from non-waxy barley. The crude ${\beta}-glucan$ purified with selective precipitation and enzymatic treatment to obtain the ${\beta}-glucan$ isolate of high purity (>99%). The total yield of purified ${\beta}-glucan$ from waxy and non-waxy barley was 4.46% and 2.59%, respectively. The surface appearance of the purified ${\beta}-glucan$ by scanning electron microscopy (SEM) showed randomly entangled multi-net structure of ${\beta}-glucan$ microfibrils. The melting temperature of ${\beta}-glucan$ from waxy and non-waxy barley measured by differential scanning calorimetry (DSC) was $184.6^{\circ}C$, and $180.3^{\circ}C$, respectively. DSC endotherm of ${\beta}-glucan$ solution showed 2 peaks near $68^{\circ}C$ and $84^{\circ}C$. Enthalpy of phase transition was higher in non-waxy ${\beta}-glucan$ than waxy ${\beta}-glucan$, and the intrinsic viscosity of ${\beta}-glucan$ solution from waxy barley was higher than that of non-waxy ${\beta}-glucan$. The pasting viscosity of barley starch with the purified ${\beta}-glucan$ determined by Rapid Visco-Analyzer was higher than that of barley starch without ${\beta}-glucan$, and the effect of ${\beta}-glucan$ on increasing the paste viscosity was greater in non-waxy barley starch.

  • PDF

Enzymatic Hydrolysis of Rice Straw, a Lignocellulosic Biomass, by Extracellular Enzymes from Fomitopsis palustris (Fomitopsis palustris의 균체 외 효소에 의한 볏짚 당화에 관한 연구)

  • Kim, Yoon-Hee;Cho, Moon-Jung;Shin, Keum;Kim, Tae-Jong;Kim, Nam-Hun;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.262-273
    • /
    • 2010
  • In the enzymatic hydrolysis of rice straw and wood meals using extra-cellular enzymes from Fomitopsis palustris, key factors which enhanced the sugar conversion yield were investigated in this work, such as enzyme production and enzyme reaction conditions, surfactant effects, and the surface structure of substrates. F. palustris cultured with softwood mixture produced 12.0 U/$m{\ell}$ for endo-${\beta}$-1,4-gulcanase (EG), 116.68 U/$m{\ell}$ for ${\beta}$-glucosidase (BGL), 18.82 U/$m{\ell}$ for cellobiohydrolase (CBH), and 13.33 U/$m{\ell}$ for ${\beta}$-xylosidase (BXL). These levels of BGL, CBH, and BXL activities were two to four folds more than enzyme activities of F. palustris cultured with rice straw. The optimum reaction conditions of cellulase-RS which produced by F. palustris with rice straw and cellulase-SW which produced by F. palustris with softwood mixture were pH 5.0 at $45^{\circ}C$ and pH 5.0 at $50^{\circ}C$, respectively. The sugar conversion yield of cellulase-SW had the highest value of $40.6{\pm}0.6%$ within 72 h when rice straw was used as substrate. By adding 0.1% Tween 20 (w/w-substrate), the sugar conversion yield of rice straw was increased to 44%, which was about four fifths sugar conversion yield of commercial enzyme, Celluclast 1.5L (Novozyme A/S). A low crystallinity and an intensive fibril surface observed by the scanning electron microscope may explain the high sugar conversion yield of rice straw.

Synthesis of Uniform Silica Nanoparticles using Tap, Industrial, and Stream water and Their Application to Electro-responsive Smart Fluid System (상수, 공업용수, 및 하천수를 활용한 균일한 실리카 나노입자 합성 및 전기감응형 스마트유체로의 응용)

  • Ha-Yeong Kim;Suk Jekal;Neunghi Lee;Minki Sa;Dong Hyun Kim;Min Sang Kim;Jiwon Kim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • This study describes the successful synthesize strategy for the silica nanoparticles utilizing various water sources, including tap, industrial, and stream waters without using deionized water. Also, as-synthesized silica nanoparticles are employed as dispersive materials for the electro-responsive smart fluid application. Specifically, homogeneous silica nanoparticles with sizes of 500-700nm are successfully prepared in large scale at once (ca. 12.0 g) with the described experimental method and showing similar structural and chemical characteristics with silica nanoparticles synthesized using the deionized water. The size of silica nanoparticles are varied according to the ion conductivity differences of tap, industrial, stream water, and deionized water. The size of silica nanoparticles decresed with the increased ion conductivity, indicating the ion suppression of growth of silica nanoparticles. Moreover, as-synthesized silica nanoparticles from various water sources of electro-responsive characteristic are investigated by the smart fluid application. The smart fluids containing silica nanoparticles synthesized by tap, industrial, and stream water exhibited higher shear stress compared to the deionized water, owing to the more rigid fibril-like structures formed by the smaller silica nanoparticles. Conclusively, uniform silica nanoparticles from various water sources without any purification are able to successfully prepared without usage of deionized water and resulting silica nanoparticles manifested higher electro-responsive performance.