• 제목/요약/키워드: fibre

검색결과 814건 처리시간 0.024초

Effects of lactic acid bacteria and molasses on fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro ruminal fermentation of rice straw silage

  • Zhao, Jie;Dong, Zhihao;Li, Junfeng;Chen, Lei;Bai, Yunfeng;Jia, Yushan;Shao, Tao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권6호
    • /
    • pp.783-791
    • /
    • 2019
  • Objective: This study was to evaluate the fermentation dynamics, structural and nonstructural carbohydrate composition and in vitro gas production of rice straw ensiled with lactic acid bacteria and molasses. Methods: Fresh rice straw was ensiled in 1-L laboratory silos with no additive control (C), Lactobacillus plantarum (L), molasses (M) and molasses+Lactobacillus plantarum (ML) for 6, 15, 30, and 60 days. After storage, the silages were subjected to microbial and chemical analyses as well as the further in vitro fermentation trial. Results: All additives increased lactic acid concentration, and reduced pH, dry matter (DM) loss and structural carbohydrate content relative to the control (p<0.05). The highest organic acid and residual sugar contents and lignocellulose reduction were observed in ML silage. L silage had the highest V-score with 88.10 followed by ML silage. L and ML silage improved in vitro DM digestibility as compared with other treatments, while in vitro neutral detergent fibre degradability (IVNDFD) was increased in M and ML silage (p<0.05). M silage significantly (p<0.05) increased propionic acid (PA) content and decreased butyric acid content and acetic acid/PA as well as 72-h cumulative gas production. Conclusion: The application of ML was effective for improving both the fermentation quality and in vitro digestibility of rice straw silage. Inclusion with molasses to rice straw could reduce in vitro ruminal gas production.

Temporal and spatial variability in the nutritive value of pasture vegetation and supplement feedstuffs for domestic ruminants in Western Kenya

  • Onyango, Alice Anyango;Dickhoefer, Uta;Rufino, Mariana Cristina;Butterbach-Bahl, Klaus;Goopy, John Patrick
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권5호
    • /
    • pp.637-647
    • /
    • 2019
  • Objective: The study aimed at quantifying seasonal and spatial variations in availability and nutritive value of herbaceous vegetation on native pastures and supplement feedstuffs for domestic ruminants in Western Kenya. Methods: Samples of herbaceous pasture vegetation (n = 75) and local supplement feedstuffs (n = 46) for cattle, sheep, and goats were collected in 20 villages of three geographic zones (Highlands, Mid-slopes, Lowlands) in Lower Nyando, Western Kenya, over four seasons of one year. Concentrations of dry matter (DM), crude ash (CA), ether extract (EE), crude protein (CP), neutral detergent fibre (NDF), gross energy (GE), and minerals were determined. Apparent total tract organic matter digestibility (dOM) was estimated from in vitro gas production and proximate nutrient concentrations or chemical composition alone using published prediction equations. Results: Nutrient, energy, and mineral concentrations were 52 to 168 g CA, 367 to 741 g NDF, 32 to 140 g CP, 6 to 45 g EE, 14.5 to 18.8 MJ GE, 7.0 to 54.2 g potassium, 0.01 to 0.47 g sodium, 136 to 1825 mg iron, and 0.07 to 0.52 mg selenium/kg DM. The dOM was 416 to 650 g/kg organic matter but differed depending on the estimation method. Nutritive value of pasture herbage was superior to most supplement feedstuffs, but its value strongly declined in the driest season. Biomass yields and concentrations of CP and potassium in pasture herbage were highest in the Highlands amongst the three zones. Conclusion: Availability and nutritive value of pasture herbage and supplement feedstuffs greatly vary between seasons and geographical zones, suggesting need for season- and region-specific feeding strategies. Local supplement feedstuffs partly compensate for nutritional deficiencies. However, equations to accurately predict dOM and improved knowledge on nutritional characteristics of tropical ruminant feedstuffs are needed to enhance livestock production in this and similar environments.

In vitro ruminal fermentation of fenugreek (Trigonella foenum-graecum L.) produced less methane than that of alfalfa (Medicago sativa)

  • Niu, Huaxin;Xu, Zhongjun;Yang, Hee Eun;McAllister, Tim A;Acharya, Surya;Wang, Yuxi
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.584-593
    • /
    • 2021
  • Objective: The objective of this study was to compare fenugreek (FG) with alfalfa (Alf) in ruminal fermentation and methane (CH4) production in vitro. Methods: Whole-plant FG harvested at 11- and 15-wk and Alf harvested at early and mid-bloom maturities, alone or as 50:50 mixture of FG and Alf at the respective maturity, were assessed in a series of 48-h in vitro batch culture incubations. Total fermentation gas and methane gas production, dry matter (DM) disappearance, volatile fatty acids, microbial protein and 16S RNA gene copy numbers of total bacteria and methanogens were determined. Results: Compared to early bloom Alf, FG harvested at 11-wk exhibited higher (p<0.05) in vitro DM and neutral detergent fibre disappearance, but this difference was not observed between the mid-bloom Alf and 15-wk FG. Regardless plant maturity, in vitro ruminal fermentation of FG produced less (p<0.001) CH4 either on DM incubated or on DM disappeared basis than that of Alf during 48-h incubation. In vitro ruminal fermentation of FG yielded similar amount of total volatile fatty acids with higher (p<0.05) propionate percentage as compared to fermentation of Alf irrespective of plant maturity. Microbial protein synthesis was greater (p<0.001) with 11-wk FG than early bloom Alf as substrate and 16S RNA gene copies of total bacteria was higher (p<0.01) with 15-wk FG than mid-bloom Alf as substrate. Compared to mid-bloom Alf, 15-wk FG had lower (p<0.05 to 0.001) amount of 16S RNA methanogen gene copies in the whole culture during 48-h incubation. Conclusion: In comparison to Alf, FG emerges as a high quality forage that can not only improve rumen fermentation in vitro, but can also remarkably mitigate CH4 emissions likely due to being rich in saponins.

An experimental and numerical investigation on fatigue of composite and metal aircraft structures

  • Pitta, Siddharth;Rojas, Jose I.;Roure, Francesc;Crespo, Daniel;Wahab, Magd Abdel
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.19-30
    • /
    • 2022
  • The static strength and fatigue crack resistance of the aircraft skin structures depend on the materials used and joint type. Most of the commercial aircraft's skin panel structures are made from aluminium alloy and carbon fibre reinforced epoxy. In this study, the fatigue resistance of four joint configurations (metal/metal, metal/composite, composite/composite and composite/metal) with riveted, adhesive bonded, and hybrid joining techniques are investigated with experiments and finite element analysis. The fatigue tests were tension-tension because of the typical nature of the loads on aircraft skin panels susceptible of experimenting fatigue. Experiment results suggest that the fatigue life of hybrid joints is superior to adhesive bonded joints, and these in turn much better than conventional riveted joints. Thanks to the fact that, for hybrid joints, the adhesive bond provides better load distribution and ensures load-carrying capacity in the event of premature adhesive failure while rivets induce compressive residual stresses in the joint. Results from FE tool ABAQUS analysis for adhesive bonded and hybrid joints agrees with the experiments. From the analysis, the energy release rate for adhesive bonded joints is higher than that of hybrid joints in both opening (mode I) and shear direction (mode II). Most joints show higher energy release rate in mode II. This indicates that the joints experience fatigue crack in the shear direction, which is responsible for crack opening.

Flexural bearing capacity and stiffness research on CFRP sheet strengthened existing reinforced concrete poles with corroded connectors

  • Chen, Zongping;Song, Chunmei;Li, Shengxin;Zhou, Ji
    • Structural Monitoring and Maintenance
    • /
    • 제9권1호
    • /
    • pp.29-42
    • /
    • 2022
  • In mountainous areas of China, concrete poles with connectors are widely employed in power transmission due to its convenience of manufacture and transportation. The bearing capacity of the poles must have degenerated over time, and most of the steel connectors have been corroded. Carbon fiber reinforced polymer (CFRP) offers a durable, light-weight alternative in strengthening those poles that have served for many years. In this paper, the bearing capacity and failure mechanism of CFRP sheet strengthened existing reinforced concrete poles with corrosion steel connectors were investigated. Four poles were selected to conduct flexural capacity test. Two poles were strengthened by single-layer longitudinal CFRP sheet, one pole was strengthened by double-layer longitudinal CFRP sheets and the last specimen was not strengthened. Results indicate that the failure is mainly bond failure between concrete and the external CFRP sheet, and the specimens fail in a brittle pattern. The cross-sectional strains of specimens approximately follow the plane section assumption in the early stage of loading, but the strain in the tensile zone no longer conforms to this assumption when the load approaches the failure load. Also, bearing capacity and stiffness of the strengthened specimens are much larger than those without CFRP sheet. The bearing capacity, initial stiffness and elastic-plastic stiffness of specimen strengthened by double-layer CFRP are larger than those strengthened by single-layer CFRP. Weighting the cost-effective effect, it is more economical and reasonable to strengthen with single-layer CFRP sheet. The results can provide a reference to the same type of poles for strengthening design.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • 제28권6호
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Influence of Alkali and Silane Treatment on the Physico-Mechanical Properties of Grewia serrulata Fibres

  • JAIN, Bhupesh;MALLYA, Ravindra;NAYAK, Suhas Yeshwant;HECKADKA, Srinivas Shenoy;PRABHU, Shrinivasa;MAHESHA, G.T.;SANCHETI, Gaurav
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권5호
    • /
    • pp.325-337
    • /
    • 2022
  • Grewia serrulata fibres were chemically treated with 3%, 6%, and 9% NaOH for the duration of 4 h. Additionally, the NaOH-treated fibres were also treated with 3 - (trimethoxysilyl) propyl methacrylate (silane). Properties such as density and tensile strength of the treated fibres were compared against the untreated fibres. The highest density was obtained in the case of 9% NaOH + silane treated fibres, which was 26.47% higher than untreated fibres, implying effective removal of hemicellulose. Likewise, the highest tensile strength was also obtained in the case of 9% NaOH + silane treated fibres. The increment observed in the tensile strength of the natural fibres was related to the removal of impurities, hemicellulose, and stress-raisers as well as deposition over the fibre surface that smoothed it. These observations were further validated by estimating changes in chemical constituents due to chemical treatment along with characterization techniques such as scanning electron microscopy and thermogravimetric analysis.

Antibacterial Activity of Selected Fruit Juices against Multidrug-Resistant Bacterial Pathogens Involved in Urinary Tract and Sexually Transmitted Infections among Tribal Women in Madhya Pradesh, India

  • Poonam Sharma;Juhi;Vaishali Halwai;Sainivedita Rout;Rambir Singh
    • 대한약침학회지
    • /
    • 제26권3호
    • /
    • pp.265-275
    • /
    • 2023
  • Objectives: The aim of this study was to evaluate the effect of fruit juices on Multi-Drug Resistant (MDR) bacterial pathogens involved in Urinary Tract Infections (UTIs) and Sexually Transmitted Infections (STIs) among tribal women in the district Anuppur, Madhya Pradesh, India. Methods: Fresh juices of lemon (Citrus limon), amla/Indian gooseberry (Phyllanthus emblica), pineapple (Ananas comosus), mosambi/sweet lime (Citrus limetta), orange (Citrus sinensis), kiwi (Actinidia deliciosa), and pomegranate (Punica granatum) fruits were evaluated for in vitro antibacterial activity against bacterial pathogens involved in UITs and STIs among tribal women. Physico-chemical analysis of fresh fruits was also carried out by measuring the pH, moisture, protein, fat, crude fibre, carbohydrate, and ascorbic acid content. Results: Lemon and amla juice showed better antibacterial activity against the pathogens as compared to other juices. MIC results fruit juices against UTIs and STIs pathogens vary depending on the specific pathogen and juice chemical constituents. The physico-chemical analysis showed that the moisture content was highest in mosambi (90%), followed by orange (87%). Ascorbic acid content was found highest in amla (540 mg/100 g), followed by kiwi (90.3 mg/100 g). Pomegranate showed highest concentration of carbohydrate (15.28 g/100 g), fat (1.28 g/100 g), and protein (1.65 g/100 g). Lemon juice had lowest pH of 2.20, followed by amla 2.67. Conclusion: The lemon juice showed highest antibacterial activity against MDR bacterial pathogens involved in UTIs and STIs among tribal women in district Anuppur, Madhya Pradesh, India. The low pH of lemon may be responsible for its high antibacterial activity as compared to other juices.

미세 방전가공 기계 구조를 위한 복합재료-포움 샌드위치 구조 설계에 관한 파라메트릭 연구 (Parametric Study on Design of Composite-Foam Sandwich Structures for Micro EDM Machine tool structures)

  • 김대일;장승환
    • Composites Research
    • /
    • 제19권2호
    • /
    • pp.13-19
    • /
    • 2006
  • 본 논문에서는 미세 방전가공(Electrical Discharge Machining; EDM) 기계를 위한 샌드위치 구조를 설계하기 위해 복합재료의 적층 순서, 두께, 그리고 리브의 형상 등을 고려한 파라메트릭 연구를 수행하였다. 샌드위치 구조는 면재인 섬유강화 복합재료와 심재인 레진 콘크리트 및 고분자 포움으로 이루어졌다. 컬럼은 정적 굽힘강성과 비굽힘강성을 높이기 위해 십자 리브를 가진 형상으로 설계하였으며, 적층 순서와 두께를 조절하였다. 베드의 경우 양방향의 강성을 동시에 향상시키기 위해 적층 순서와 리브 형상을 조절하였다. 최적의 고강성을 얻기 위하여 리브의 두께와 면재의 두께 등 설계 파라메터의 최적치를 제안하였다. 각 설계 파라메터의 변화에 따른 구조의 정적, 동적 강성의 변화를 확인하기 위해 유한요소해석을 수행하였으며, 진동 실험을 통하여 각 요소의 고유진동수와 감쇠비를 측정하여 비교하였다. 이러한 결과로부터 고정밀 미세 방전가공 기계 구조를 위한 최적의 형상조건을 제안하였다.

Develop a sustainable wet shotcrete for tunnel lining using industrial waste: a field experiment and simulation approach

  • Jinkun Sun;Rita Yi Man Li;Lindong Li;Chenxi Deng;Shuangshi Ma;Liyun Zeng
    • Advances in concrete construction
    • /
    • 제15권5호
    • /
    • pp.333-348
    • /
    • 2023
  • Fast infrastructure development boosts the demand for shotcrete. Despite sand and stone being the most common coarse and fine aggregates for shotcrete, excessive exploration of these materials challenges the ecological environment. This study utilized an industrial solid waste, high-titanium heavy slag, blended with steel fibers to form Wet Shotcrete of Steel Fiber-reinforced High-Titanium Heavy Slag (WSSFHTHS). It investigated its workability, shotcrete performance and mechanical properties under different water-to-cement ratios, fly ash content, superplasticizer dosage, and steel fiber content. The tunnel excavation and support were investigated by conducting finite element numerical simulation analysis and was used in 3 tunnel lining pipes in Zhonggouwan tailing pond. The major findings are as follows: (1) The water-to-cement ratio (w/c ratio) significantly impacted the compressive strength of WSSFHTHS. The highest 28-day compressive strength of 60 MPa was achieved when the w/c ratio was 0.38; (2) Adding fly ash improved the workability and shotcrete performance and strength development of WSSFHTHS. The best anti-permeability performance was achieved when the fly ash constituted 15%, with the lowest permeability coefficient of 4.596 × 10-11 cm/s; (3) The optimum superplasticizer dosage for WSSFHTHS is 0.8%. It provided the best workability and shotcrete performance. Excessive dosage resulted in water bleeding and poor aggregate encapsulation, while insufficient dosage decreased flowability and adversely affected shotcrete performance; (4) The dosage of steel fibers significantly impacted the flexural and tensile strength of WSSFHTHS. When the steel fiber dosage was 45 kg/m3, the 28-day flexural and tensile strengths were 8.95 MPa and 6.15 MPa, respectively; (5) By integrating existing shotcrete techniques, the optimal lining thickness was 80 mm for WSSFHTHS per simulation. The results revealed that after using WSSFHTHS, the displacement of the tunnel surrounding the rock significantly improved, with no cracks or hollows, similar to the simulation results.