• 제목/요약/키워드: fibre

검색결과 812건 처리시간 0.026초

CALIBRATION TRANSFER FROM REFLECTANCE TO INTERACTANCE-REFLECTANCE WITHOUT STANDARDS: USE OF MATHEMATICAL PRETREATMENTS

  • Fernandez Cabanas, Victor-M.;Varo, Garrido;Dardenne, Pierre
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1242-1242
    • /
    • 2001
  • The use of fibre optic probes for NIR quality control in the industry is becoming very important, as it provides a powerful tool to reduce sample analysis time and it facilitates the implementation of on-line analyses. However, most of the applications of fibre optics and probes have been done on suspensions, clear liquids and films, chemical and pharmaceutical products and also on fruits and animal products. Traditional applications of near infrared spectroscopy in agriculture have been developed in reflectance mode and calibration transfer could be an interesting way to reduce efforts. Classical methods for calibration transfer between different instruments involve the use of sealed reference cups, but, as fibre optic analysis does not use cups, it is necessary to develop new methods for calibration transfer without standards (Blank et al., 1996). In this paper, we have studied how the most used mathematical pretreatments (three methods of Multiplicative Scatter Correction, Standard Normal Variate, Detrending and derivatives) and their combinations applied to calibration development can contribute to reduce spectral differences between instruments. Calibration equations were obtained for three sets of cereals (barley, wheat and maize) scanned in reflectance mode and then they were validated with samples analysed in reflectance and interactance-reflectance mode (fibre optic). Preliminary results show how some combination of pretreatments reduce the differences in the predicted values, measured as standard error of differences, facilitating the use of calibrations obtained in reflectance for samples analysed by interactance-reflectance. However, the application of pretreatments is not enough to satisfy the control limits for calibration transfer suggested by Shenk et al. (1992), and it should be necessary to combine them with a specific algorithm for instruments standardization.

  • PDF

Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation

  • Satankar, Rajesh Kumar;Sharma, Nitin;Ramteke, Prashik Malhari;Panda, Subtra Kumar;Mahapatra, Siba Shankar
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.263-276
    • /
    • 2020
  • In this article, the acoustic responses of free vibrated natural fibre-reinforced polymer nanocomposite structure have been investigated first time with the help of commercial package (ANSYS) using the multiphysical modelling approach. The sound relevant data of the polymeric structure is obtained by varying weight fractions of the natural nanofibre within the composite. Firstly, the structural frequencies are obtained through a simulation model prepared in ANSYS and solved through the static structural analysis module. Further, the corresponding sound data within a certain range of frequencies are evaluated by modelling the medium through the boundary element steps with adequate coupling between structure and fluid via LMS Virtual Lab. The simulation model validity has been established by comparing the frequency and sound responses with published results. In addition, sets of experimentation are carried out for the eigenvalue and the sound pressure level for different weight fractions of natural fibre and compared with own simulation data. The experimental frequencies are obtained using own impact type vibration analyzer and recorded through LABVIEW support software. Similarly, the noise data due to the harmonically excited vibrating plate are recorded through the available Array microphone (40 PH and serial no: 190569). The numerical results and subsequent experimental comparison are indicating the comprehensiveness of the presently derived simulation model. Finally, the effects of structural design parameters (thickness ratio, aspect ratio and boundary conditions) on the acoustic behaviour of the natural-fibre reinforced nanocomposite are computed using the present multiphysical model and highlighted the inferences.

Effect of Feed Protein Source on Digestion and Wool Production in Angora Rabbit

  • Bhatt, R.S.;Sawal, R.K.;Mahajan, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권7호
    • /
    • pp.1075-1079
    • /
    • 1999
  • Adult German cross $(German{\times}British{\times}Russian)$ angora rabbits (one year age), 32 in number were divided randomly into four groups $(T_1-T_4)$ with equal sex ratio and fed diets containing $T_1$ groundnut cake (GNC); $T_3$, soyaflakes (SF); $T_4$, sunflower cake (SFC) and $T_2$, a mixture of all the three cakes along with green forage as roughage for a period of 9 months. Nine per cent protein was added from each protein source. Fibre level was maintained by adjusting the level of rice phak in the diets. The diets were iso-nitrogenous and contained similar level of fibre. DMI through roughage was not affected due to source of protein in the diet, however, DMI through concentrate was higher $(p{\leq}0.05)$ with SFC diet, which resulted in higher total feed intake in the group $(T_4)$. Body weights increased up to second shearing, thereafter it decreased due to summer depression. Diet containing soyaflakes sustained higher wool yield whereas, it was lowest $(p{\leq}0.05)$ on SFC diet. Wool attributes (staple length, medullation, fibre diameter) were not affected due to source of protein in the diet. Digestibility of fibre and its fractions (ADF, cellulose, hemicellulose) decreased $(p{\leq}0.05)$ with incorporation of SFC in the diets. Balance of calcium was lowest whereas, that of nitrogen was highest with SFC diet $(T_4)$. Biological value of N and net protein utilization was better when different protein sources were mixed together $(T_2)$. Protein quality of soyaflakes proved better for wool production followed by groundnut cake and mixture of three protein sources. Sunflower cake alone or in combination decreased wool production which may be checked by supplementation of amino acids and energy.

Monitoring in-service performance of fibre-reinforced foamed urethane sleepers/bearers in railway urban turnout systems

  • Kaewunruen, Sakdirat
    • Structural Monitoring and Maintenance
    • /
    • 제1권1호
    • /
    • pp.131-157
    • /
    • 2014
  • Special track systems used to divert a train to other directions or other tracks are generally called 'railway turnout'. A traditional turnout system consists of steel rails, switches, crossings, steel plates, fasteners, screw spikes, timber bearers, ballast and formation. The wheel rail contact over the crossing transfer zone has a dip-like shape and can often cause detrimental impact loads on the railway track and its components. The large impact also emits disturbing noises (either impact or ground-borne noise) to railway neighbors. In a brown-field railway track where an existing aged infrastructure requires renewal or maintenance, some physical constraints and construction complexities may dominate the choice of track forms or certain components. With the difficulty to seek for high-quality timbers with dimensional stability, a methodology to replace aged timber bearers in harsh dynamic environments is to adopt an alternative material that could mimic responses and characteristics of timber in both static and dynamic loading conditions. A critical review has suggested an application of an alternative material called fibre-reinforced foamed urethane (FFU). The full-scale capacity design makes use of its comparable engineering characteristics to timber, high-impact attenuation, high damping property, and a longer service life. A field trial to investigate in-situ behaviours of a turnout grillage system using an alternative material, 'fibre-reinforced foamed urethane (FFU)' bearers, has been carried out at a complex turnout junction under heavy mixed traffics at Hornsby, New South Wales, Australia. The turnout junction was renewed using the FFU bearers altogether with new special track components. Influences of the FFU bearers on track geometry (recorded by track inspection vehicle 'AK Car'), track settlement (based on survey data), track dynamics, and acoustic characteristics have been measured. Operational train pass-by measurements have been analysed to evaluate the effectiveness of the replacement methodology. Comparative studies show that the use of FFU bearers generates higher rail and sleeper accelerations but the damping capacity of the FFU help suppress vibration transferring onto other track components. The survey data analysis suggests a small vertical settlement and negligible lateral movement of the turnout system. The static and dynamic behaviours of FFU bearers appear to equate that of natural timber but its service life is superior.

Chemical Characterization and Water Holding Capacity of Fibre-rich Feedstuffs Used for Pigs in Vietnam

  • Ngoc, T.T.B.;Len, N.T.;Lindberg, J.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권6호
    • /
    • pp.861-868
    • /
    • 2012
  • During two years, four samples per year were collected in Vietnam from rice bran, cassava residue, brewer's grain, tofu residue, soybean meal, coconut cake, sweet potato vines and water spinach for chemical analysis and assessment of water holding capacity (WHC). The selected feedstuffs represent fibre-rich plant sources and agro-industry co-products commonly used in pig feeding in Vietnam. The content (g/kg DM) of crude protein (CP), ether extract (EE) and non-starch polysaccharides (NSP) varied between feedstuffs and ranged from 21 to 506 for CP, from 14 to 118 for EE and from 197 to 572 for NSP. Cassava residue had a high starch content of 563 g/kg DM, while sweet potato vines, water spinach, coconut cake and soybean meal had a high content of sugars (63-71 g/kg DM). The content of individual neutral sugars varied between feed ingredients, with the highest content of arabinose, galactose and glucose in tofu residue, the highest content of xylose in brewer's grain and the highest content of mannose in coconut cake. The content of uronic acid was high for cassava residue, tofu residue, sweet potato vines and water spinach (57-88 g/kg DM). The content of soluble non-cellulosic polysaccharides (S-NCP) was positively correlated ($r^2$ = 0.82) to the WHC. The content (g/kg DM) of CP, NDF, neutral sugars, total NSP, total NCP, S-NCP and total dietary fibre in tofu residue, water spinach and coconut cake varied (p<0.05) between years. In conclusion, diet formulation to pigs can be improved if the variation in chemical composition of the fibre fraction and in WHC between potential feed ingredients is taken into account.

Wood and Cellular Properties of 4 New Hevea Species

  • Allwi, Norul Izani Md.;Sahri, Mohd. Hamami;Chun, Su-Kyoung
    • 한국가구학회지
    • /
    • 제19권4호
    • /
    • pp.273-282
    • /
    • 2008
  • Increasing demand for timber and the depletion of natural forest have encouraged utilization of many non-popular species. The understanding of wood properties and behavior is important to evaluate the potential of these species to produce high quality end products. This study determines the anatomical and physical properties of Hevea species viz Hevea pauciflora, Hevea guianensis, Hevea spruceana, Hevea benthamiana and Hevea brasiliensis. Each sample tree was cut into three different portions along the height (bottom- B, middle- M and upper -T parts) and two radial samples (outer- O and inner- I parts). H. brasiliensis clone RRIM 912 exhibited the longest fibre with $1214{\mu}m$, followed by H. benthamiana (HB, $1200{\mu}m$), H. pauciflora (HP, $1189{\mu}m$), H. spruceana (HS, $1158{\mu}m$) and H. guianensis (HG, $1145{\mu}m$). Fibre length has a positive correlation with specific gravity. The largest fibre diameter ($24.9{\mu}m$) and lumen diameter ($12.5{\mu}m$) were recorded in H. guianensis. The highest moisture content was obtained from H. spruceana (64.34%) compared to the lowest with 60.01% (Clone RRIM912). The higher moisture content is normally associated with lower strength. Overall, the properties of clone RRIM 912 is found to be comparatively better because of higher strength due to longer fibre length, thicker cell walls and higher specific gravity than the other Hevea species. Therefore, this species can be used as a general utility timber.

  • PDF

Deformation behaviour of steel/SRPP fibre metal laminate characterised by evolution of surface strains

  • Nam, J.;Cantwell, Wesley;Das, Raj;Lowe, Adrian;Kalyanasundaram, Shankar
    • Advances in aircraft and spacecraft science
    • /
    • 제3권1호
    • /
    • pp.61-75
    • /
    • 2016
  • Climate changes brought on by human interventions have proved to be more devastating than predicted during the recent decades. Recognition of seriousness of the situation has led regulatory organisations to impose strict targets on allowable carbon dioxide emissions from automotive vehicles. As a possible solution, it has been proposed that Fibre Metal Laminate (FML) system is used to reduce the weight of future vehicles. To facilitate this investigation, FML based on steel and self-reinforced polypropylene was stamp formed into dome shapes under different blank holder forces (BHFs) at room temperature and its forming behaviour analysed. An open-die configuration was used in a hydraulic press so that a 3D photogrammetric measurement system (ARAMIS) could capture real-time surface strains. This paper presents findings on strain evolutions at different points along and at $45^{\circ}$ to fibre directions of circular FML blank, through various stages of forming. It was found initiation and rate of deformation varied with distance from the pole, that the mode of deformations range from biaxial stretching at the pole to drawing towards flange region, at decreasing magnitudes away from the pole in general. More uniform strain distribution was observed for the FML compared to that of plain steel and the most significant effects of BHF were its influence on forming depth and level of strain reached before failure.

Bending characteristics of Prestressed High Strength Concrete (PHC) spun pile measured using distributed optical fibre strain sensor

  • Mohamad, Hisham;Tee, Bun Pin;Chong, Mun Fai;Lee, Siew Cheng;Chaiyasarn, Krisada
    • Smart Structures and Systems
    • /
    • 제29권2호
    • /
    • pp.267-278
    • /
    • 2022
  • Pre-stressed concrete circular spun piles are widely used in various infrastructure projects around the world and offer an economical deep foundation system with consistent and superior quality compared to cast in-situ and other concrete piles. Conventional methods for measuring the lateral response of piles have been limited to conventional instrumentation, such as electrical based gauges and pressure transducers. The problem with existing technology is that the sensors are not able to assist in recording the lateral stiffness changes of the pile which varies along the length depending on the distribution of the flexural moments and appearance of tensile cracks. This paper describes a full-scale bending test of a 1-m diameter spun pile of 30 m long and instrumented using advanced fibre optic distributed sensor, known as Brillouin Optical Time Domain Analysis (BOTDA). Optical fibre sensors were embedded inside the concrete during the manufacturing stage and attached on the concrete surface in order to measure the pile's full-length flexural behaviour under the prescribed serviceability and ultimate limit state. The relationship between moments-deflections and bending moments-curvatures are examined with respect to the lateral forces. Tensile cracks were measured and compared with the peak strains observed from BOTDA data which corroborated very well. By analysing the moment-curvature response of the pile, the structure can be represented by two bending stiffness parameters, namely the pre-yield (EI) and post-yield (EIcr), where the cracks reduce the stiffness property by 89%. The pile deflection profile can be attained from optical fibre data through closed-form solutions, which generally matched with the displacements recorded by Linear Voltage Displacement Transducers (LVDTs).

Fibre composite railway sleeper design by using FE approach and optimization techniques

  • Awad, Ziad K.;Yusaf, Talal
    • Structural Engineering and Mechanics
    • /
    • 제41권2호
    • /
    • pp.231-242
    • /
    • 2012
  • This research work aims to develop an optimal design using Finite Element (FE) and Genetic Algorithm (GA) methods to replace the traditional concrete and timber material by a Synthetic Polyurethane fibre glass composite material in railway sleepers. The conventional timber railway sleeper technology is associated with several technical problems related to its durability and ability to resist cutting and abrading action of the bearing plate. The use of pre-stress concrete sleeper in railway industry has many disadvantages related to the concrete material behaviour to resist dynamic stress that may lead to a significant mechanical damage with feasible fissures and cracks. Scientific researchers have recently developed a new composite material such as Glass Fibre Reinforced Polyurethane (GFRP) foam to replace the conventional one. The mechanical properties of these materials are reliable enough to help solving structural problems such as durability, light weight, long life span (50-60 years), less water absorption, provide electric insulation, excellent resistance of fatigue and ability to recycle. This paper suggests appropriate sleeper design to reduce the volume of the material. The design optimization shows that the sleeper length is more sensitive to the loading type than the other parameters.

STUDY ON THE UTILIZATION OF RICE STRAW BY SHEEP 1. THE EFFECT OF SOYBEAN MEAL SUPPLEMENTATION ON THE VOLUNTARY INTAKE OF RICE STRAW AND RUMINAL FERMENTATION

  • Warly, L.;Matsui, T.;Harumoto, T.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제5권4호
    • /
    • pp.687-693
    • /
    • 1992
  • The study was conducted to investigate the effect of soybean meal (SBM) supplementation on the voluntary intake of rice straw and ruminal fermentation characteristics. Balance trials were conducted with three Hapanese Corriedale wethers fed a rice straw alone (control), rice straw supplemented with 75 and 150 g of SBM/day in a $3{\times}3$ latin square design. Voluntary intake of rice straw in sheep fed both levels of SBM supplemented diets was significantly higher (p<0.05) than that in sheep fed control diet. Crude protein digestibility was significantly increased (p<0.05), but organic matter, crude fibre, neutral detergent fibre and acid detergent fibre digestibilities were not affected by SBM supplementation. Nitrogen balance was positive in sheep on both levels of SBM supplemented diets, but negative in animals on the control diet. Rumen ammonia and blood urea-nitrogen concentrations increased (p<0.05) as increasing level of SBM. Total volatile fatty acids, acetate, propionate, butyrate and valerate concentrations in rumen fluid were also significantly increased (p<0.01), but ruminal pH was decreased (p<0.05) by SBM supplementation.