• Title/Summary/Keyword: fiberglass pipe

Search Result 20, Processing Time 0.02 seconds

Flexural Rigidity of MMA-Modified Fiberglass Reinforced Plastic Composite Pipe (MMA 개질 강화 플라스틱 복합관의 휨강성)

  • 연규석;최종윤;백종만;권택정;정중호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.429-432
    • /
    • 2003
  • MMA-modified fiberglass-reinforced plastic composite pipe was produced by using the binder of MMA-modified unsaturated polyester resin in which low viscosity MMA was added to unsaturated polyester resin. Sixteen specimens were made of polymer mortar and fiberglass-reinforced plastic by the centrifugal method. For these specimens the external strength tests were carried out by taking the core thickness consisting of polymer mortar and the fiberglass content per unit area as experimental variables to figure out the effect of variations of these variables influencing on flexural rigidity that is an important property for the composite pipe. Results of this study are believed to provide the basic data for more economical and practical design of MMA-modified fiberglass-reinforced plastic composite pipe.

  • PDF

Feasibility Study on Cold Water Pipe Diameter by Friction Loss and Energy Conversion on OTEC (해양온도차 발전을 위한 심층수 파이프 직경에 따른 에너지 손실량 검토)

  • Jung, Hoon;Heo, Gyunyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.170-170
    • /
    • 2010
  • The energy conversion from the temperature difference between hot and cold source like ocean thermal energy conversion (OTEC), requires a long and large-diameter pipe (about 1000 to 10,000 meters long) to reach the deep water. The pipe diameter ranges from 2.8 meter for proposed early test systems, to 5 meter for large, commercial power generation systems. The pipe must be designed to resist collapsing pressures produced by water temperature and density differences, and the reduced pressure required to induce flow up the pipe. Other design considerations include the external-drag effect on the pipe due to ocean currents, and the wave-induced motions of the platform to which the pipe is attached. Various approaches to the pipe construction have been proposed, including aluminum, steel, concrete, and fiberglass. More recently, a flexible pipe construction involving the use of fiberglass reinforced plastic has been proposed. This report presents the results of a scaled fixed cold water pipe (CWP) model test program performed by EES(Engineering Equation Solver) to demonstrate the feasibility of this pipe approach.

  • PDF