• Title/Summary/Keyword: fiber-steel

Search Result 1,937, Processing Time 0.024 seconds

Setting Time, Strength and Rebound Rate of Shotcrete according In Accelerators (급결제에 따른 숏크리트의 응결, 강도 및 리바운드율)

  • Lee Seong-Haeng;Kim Yong-Ha;Hahm Hyung-Gil;Kim Kwan-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.427-434
    • /
    • 2005
  • An experimental investigation was carried out in order to verify the compressive strength, flexural strength, equivalent bending strength, rebound rate of shotcrete according to silicate accelerator, aluminate accelerator, cement mineral accelerator respectively and to especially evaluate the performance of shotcrete using cement mineral accelerator for high quality. The test result of compressive strength was showed that all accelerators were satisfied the required test value for each age, for the requirement of having the $75\%$ or higher compressive strength ratio to plain concretes at 28 days, cement mineral accelerator with $87\%$ compressive strength ratio was only satisfied. In flexural strength test, cement mineral accelerator was satisfied the flexural strength requirement in steel fiber reinforced shotcrete for each age. Aluminate type was conformed to the requirement for 28 days, but not at 1 day, silicate type was failed to satisfy standard requirement. Rebound rate was measured between $11{\~}19\%$ and cement mineral accelerator was showed comparatively lower rebound rate. Based on the test results, cement mineral accelerator exhibited excellent strength improvement and lower rebound rate compared to the conventional accelerator, its result is showed the possibility of making high performance shotcrete.

Shape Optimum Design of Pultruded FRP Bridge Decks (인발성형된 FRP 바닥판의 형상 최적설계)

  • 조효남;최영민;김희성;김형열;이종순
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2004
  • Due to their high strength to weight ratios and excellent durability, fiber reinforced polymer(FRP) is widely used in construction industries. In this paper, a shape optimum design of FRP bridge decks haying pultruded cellular cross-section is presented. In the problem formulation, an objective function is selected to minimize the volumes. The cross-sectional dimensions and material properties of the deck of FRP bridges are used as the design variables. On the other hand, deflection limits in the design code, material failure criteria, buckling load, minimum height, and stress are selected as the design constraints to enhance the structural performance of FRP decks. In order to efficiently treat the optimization process, the cross-sectional shape of bridge decks is assumed to be a tube shape. The optimization process utilizes an improved Genetic Algorithms incorporating indexing technique. For the structural analysis using a three-dimensional finite element, a commercial package(ABAQUS) is used. Using a computer program coded for this study, an example problem is solved and the results are presented with sensitivity analysis. The bridge consists of a deck width of 12.14m and is supported by five 40m long steel girders spaced at 2.5m. The bridge is designed to carry a standard DB-24 truck loading according to the Standard Specifications for Highway Bridges in Korea. Based on the optimum design, viable cross-sectional dimensions for FRP decks, suitable for pultrusion process are proposed.

An Evaluation of Fatigue Life and Strength of Lightweight Bogie Frame Made of Laminate Composites (경량 복합재 대차프레임의 피로수명 및 강도 평가)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Kim, Jung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.913-920
    • /
    • 2011
  • We describe the evaluation of the fatigue life and strength of a lightweight railway bogie frame made of glass fiber/epoxy 4-harness satin-woven composites. To obtain the S-N curve for the evaluation of the fatigue characteristics of the composite bogie frame, we performed a tension-compression fatigue test for composite specimens with different stacking sequences of the warp direction, fill direction, and $0^{\circ}/90^^{\circ}$ direction. We used a stress ratio (R) of -1, a frequency of 5 Hz, and an endurance limit of $10^7$. The fatigue strength of the composite bogie frame was evaluated by a Goodman diagram according to JIS E 4207. The results show that the fatigue life and strength of the lightweight composite bogie satisfy the requirements of JIS E 4207. Given its weight, its performance was better than that of a conventional metal bogie frame based on an SM490A steel material.

Mechanical Properties and Wear Behaviour of $Al/SiC/Al_{2}O_{3}$ Composite Materials ($Al/SiC/Al_{2}O_{3}$복합재료의 기계적 성질 및 마멸특성)

  • 임흥준;김영한;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2498-2508
    • /
    • 1993
  • $Al/SiC/Al_{2}O_{3}$ hybrid composites are fabricated by squeeze infiltration method. From the misconstructive of $Al/SiC/Al_{2}O_{3}$ hybrid composites fabricated by squeeze infiltration method, uniform distribution of reinforcements and good bondings are found. Hardness value of $Al/SiC/Al_{2}O_{3}$ hybrid composites increases linearly with the volume fraction of reinforcement because SiC whisker and $Al_{2}$O$_{3}$ fiber have an outstanding hardness. Optimal aging conditions are obtained by examining the hardness of $Al/SiC/Al_{2}O_{3}$ hybrid composites with different aging time. Tensile properties such as Young's modulus and ultimate tensile strength are improved up to 30% and 40% by the addition of reinforcements, respectively. Failure mode of $Al/SiC/Al_{2}O_{3}$ hybrid composites is ductile on microstructural level. Through the abrasive wear test and wear surface analysis, wear behaviour and mechanism of 6061 aluminum and $Al/SiC/Al_{2}O_{3}$ hybrid composites are characterized under various testing conditions. The addition of SiC whisker to $Al/SiC/Al_{2}O_{3}$ composites gives rise to improvement of the wear resistance. The wear resistance of $Al/SiC/Al_{2}O_{3}$ hybrid composites is superior to that of Al/SiC composites. The wear mechanism of aluminum alloy is mainly abrasive wear at low speed range and adhesive and melt wear at high speed range. In contrast, that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is abrasive wear at all speed range, but severe wear when counter material is stainless steel. As the testing temperature increases, wear loss of aluminum alloy decreases because the matrix is getting more ductile, but that of $Al/SiC/Al_{2}O_{3}$ hybrid composites is hardly varied. Oil lubricant is more effective to reduce the wear loss of aluminum alloy and $Al/SiC/Al_{2}O_{3}$ hybrid composites at high speed range.

Prediction of Ultimate Strength and Strain of Concrete Columns Retrofitted by FRP Using Adaptive Neuro-Fuzzy Inference System (FRP로 보강된 콘크리트 부재의 압축응력-변형률 예측을 위한 뉴로퍼지모델의 적용)

  • Park, Tae-Won;Na, Ung-Jin;Kwon, Sung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • Aging and severe environments are major causes of damage in reinforced concrete (RC) structures such as buildings and bridges. Deterioration such as concrete cracks, corrosion of steel, and deformation of structural members can significantly degrade the structural performance and safety. Therefore, effective and easy-to-use methods are desired for repairing and strengthening such concrete structures. Various methods for strengthening and rehabilitation of RC structures have been developed in the past several decades. Recently, FRP composite materials have emerged as a cost-effective alternative to the conventional materials for repairing, strengthening, and retrofitting deteriorating/deficient concrete structures, by externally bonding FRP laminates to concrete structural members. The main purpose of this study is to investigate the effectiveness of adaptive neuro-fuzzy inference system (ANFIS) in predicting behavior of circular type concrete column retrofitted with FRP. To construct training and testing dataset, experiment results for the specimens which have different retrofit profile are used. Retrofit ratio, strength of existing concrete, thickness, number of layer, stiffness, ultimate strength of fiber and size of specimens are selected as input parameters to predict strength, strain, and stiffness of post-yielding modulus. These proposed ANFIS models show reliable increased accuracy in predicting constitutive properties of concrete retrofitted by FRP, compared to the constitutive models suggested by other researchers.

Development of Underwater Adhesive, Epoxy, and FRP Composite for Repair and Strengthening of Underwater Structure (수중 구조물의 보수·보강을 위한 수중 접착제, 에폭시와 섬유복합재의 개발)

  • Kim, Sung-Bae;Yi, Na-Hyun;Nam, Jin-Won;Byun, Keun-Joo;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.149-158
    • /
    • 2010
  • Recently, numerous construction techniques for repairing and strengthening methods for above ground or air exposed concrete structure have been developed. However repairing and strengthening methods for underwater structural members under continuous loading, such as piers and steel piles need the further development. Therefore, this study develops an aqua epoxy, which can be used for repairing and strengthening of structural members located underwater. Moreover, using the epoxy material and strengthening fibers, a fiber reinforced composite sheet called Aqua Advanced FRP (AAF) for underwater usage is developed. To verify and to obtain properties of the material and the performance of AAF, several tests such as pull-off strength test, bond shear strength test, and chemical resistance test, were carried out. The results showed that the developed aqua epoxy does not easily dissolve in wet conditions and does not create any residual particle during hardening. In spite of underwater conditions, it showed the superior workability, because of the high viscosity over 30,000 cps and adhesion capacity over 2 MPa, which are nearly equivalent to those used in dry conditions. In case of the chemical resistance test, the developed aqua epoxy and composite showed the weight change of about 0.5~1.0%, which verifies the superior chemical resistance.

Development of Insulation Sheet Materials and Their Sound Characterization

  • Ni, Qing-Qing;Lu, Enjie;Kurahashi, Naoya;Kurashiki, Ken;Kimura, Teruo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.25-40
    • /
    • 2008
  • The research and development in soundproof materials for preventing noise have attracted great attention due to their social impact. Noise insulation materials are especially important in the field of soundproofing. Since the insulation ability of most materials follows a mass rule, the heavy weight materials like concrete, lead and steel board are mainly used in the current noise insulation materials. To overcome some weak points in these materials, fiber reinforced composite materials with lightweight and other high performance characteristics are now being used. In this paper, innovative insulation sheet materials with carbon and/or glass fabrics and nano-silica hybrid PU resin are developed. The parameters related to sound performance, such as materials and fabric texture in base fabric, hybrid method of resin, size of silica particle and so on, are investigated. At the same time, the wave analysis code (PZFlex) is used to simulate some of experimental results. As a result, it is found that both bundle density and fabric texture in the base fabrics play an important role on the soundproof performance. Compared with the effect of base fabrics, the transmission loss in sheet materials increased more than 10 dB even though the thickness of the sample was only about 0.7 mm. The results show different values of transmission loss factor when the diameters of silica particles in coating materials changed. It is understood that the effect of the soundproof performance is different due to the change of hybrid method and the size of silica particles. Fillers occupying appropriate positions and with optimum size may achieve a better effect in soundproof performance. The effect of the particle content on the soundproof performance is confirmed, but there is a limit for the addition of the fillers. The optimization of silica content for the improvement of the sound insulation effect is important. It is observed that nano-particles will have better effect on the high soundproof performance. The sound insulation effect has been understood through a comparison between the experimental and analytical results. It is confirmed that the time-domain finite wave analysis (PZFlex) is effective for the prediction and design of soundproof performance materials. Both experimental and analytical results indicate that the developed materials have advantages in lightweight, flexibility, other mechanical properties and excellent soundproof performance.

Analysis of Heat Transfer Characteristics Based on Design Factors for Determining the Internal Geometry of Metal Insulation in Nuclear Power Plant (원전용 금속단열재의 내부 형상결정을 위한 설계인자 별 열전달 특성 분석)

  • Song, Ki O;Yu, Jeong Ho;Lee, Tae Ho;Jeon, Hyun Ik;Ha, Seung Woo;Cho, Sun Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1175-1181
    • /
    • 2015
  • A heat insulating material used in the industrial site normally derives its heat insulating performance by using a low thermal conductivity material such as glass fiber. In case of the metal insulation for nuclear power plant, in contrast, only TP 304 stainless steel foil having high thermal conductivity is the only acceptable material. So, it is required to approach in structural aspect to ensure the insulation performance. In this study, the design factors related to the metal insulation internal structure were determined considering the three modes of heat transfer, i.e., conduction, convection, and radiation. The analysis of heat flow was used to understand the ratio of the heat transfer from each factor to the overall heat transfer from all the factors. Based on this study, in order to minimize the convection phenomenon caused by the internal insulation, a multiple foil was inserted in the insulation. The increase in the conduction heat transfer rate was compared, and the insulation performance under the three modes of heat transfer was analyzed in order to determine the internal geometry.

Asphalt Fumes and Polycyclic Aromatic Hydrocarbons(PAHs) Exposure Assessment among Asphalt Road Paving Workers (아스팔트 도로포장 작업자의 아스팔트 흄 및 다환방향족탄화수소 노출수준 평가)

  • Park, Hyunhee;Hwang, Eunsong;Kim, Sungho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.3
    • /
    • pp.257-266
    • /
    • 2018
  • Objectives: The objective of this study was to evaluate asphalt fumes and PAHs exposure among asphalt road paving workers. Methods: Task-based personal air samplings(n=41) were carried out in 3 asphalt road paving construction sites using PTFE (polytetrafluorethylene) filters for asphalt fume and XAD-2 with glass fiber filters for PAHs. The concentration of fumes and PAHs were showed by four different job(paver finisher operator, paving laborer(raker), macadam roller operator and tire roller operator). Results: The geometric mean(GM) concentration of asphalt fumes as benzene soluble aerosol was highest at paving laborers($42.32{\mu}g/m^3$), followed by in order, paver finisher operators($41.57{\mu}g/m^3$), macadam roller operators($31.9{\mu}g/m^3$), and tire roller operators($30.31{\mu}g/m^3$). The GM of total PAHs concentration was highest at paver finisher operators($37.5{\mu}g/m^3$), followed by in order, paving laborers($20.13{\mu}g/m^3$), tire roller operators($8.66{\mu}g/m^3$), and macadam roller operators($6.23{\mu}g/m^3$). The results of the evaluation of 16 compounds of PAHs showed that the concentrations of naphthalene, achenaphthylene, achenaphthene, pyrene, fluorene and benz (a) anthracene was higher than those of other PAHs compounds and as the carcinogenic substances, benzo(a)pyrene, and debenz(a,h) anthracene were detected. The benzo(a)pyrene equivalent concentration(BaPeq) was $2.81{\mu}g/m^3$ at paver finisher operators, $2.07{\mu}g/m^3$ at paving laborers, $0.41{\mu}g/m^3$ at tire roller operators and $0.22{\mu}g/m^3$ at macadam roller operators. Asphalt road paving workers have higher benzo(a)pyrene equivalent(BaPeq) values even though at lower total PAHs concentration than workers in steel pipe coating and tar industry. Conclusions: Asphalt road paving workers were found to have risk of carcinogen exposure due to higher Benzo(a)pyrene equivalent concentration(BaPeq) than other PAHs exposure occupations. This study confirmed the carcinogenic hazards among asphalt paving workers.

Load Transfer Characteristics of the 7-wire strand using FBG Sensor Embedded Smart Tendon (FBG센서가 내장된 스마트 텐던을 이용한 7연 강연선의 인발 하중전이 특성)

  • Kim, Young-Sang;Suh, Dong-Nam;Kim, Jae-Min;Sung, Hyun-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • With the substantial increase of the size of structure, the management of excavation becomes more difficult. Therefore, massive collapses which are related to retaining wall recently increase. However, since the study on measuring and monitoring the pre-stressing force of anchor is insufficient, behavior of anchor may not be predicted and monitored appropriately by the existing strain gauge and load cell type monitoring system. FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, is adapted to measure the strain and pre-stressing force of 7-wire strand, so called smart tendon. A series of pullout tests were performed to verify the feasibility of smart tendon and find out the load transfer mechanism around the steel wire tendon fixed to rock with grout. Distribution of measured strains and estimated shear stresses are compared with those predicted by theoretical solutions. It was found that developed smart tendon can be used effectively for measuring strain of 7-wire strand anchor and theoretical solutions underestimate the magnitude of shear stress and load transfer depth.