• Title/Summary/Keyword: fiber-steel

Search Result 1,953, Processing Time 0.032 seconds

Long Term Monitoring of Prestressing Tension Force in Post-Tension UHPC Bridge using Fiber Optical FBG Sensor (FBG 광섬유센서가 내장된 7연 강연선을 이용한 포스트텐션 UHPC 교량의 긴장력 장기모니터링)

  • Kim, Hyun-Woo;Kim, Jae-Min;Choi, Song-Yi;Park, Sung-Yong;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.699-706
    • /
    • 2015
  • This paper presents results of one-year monitoring on prestressing force of a 7-wire steel post-tensioning strand which is installed in a UHPC(ultra high performance concrete) bridge with 11.0 m long, 5.0 m wide, and 0.6 m high by using a FBG-encapsulated 7-wire steel strand. The initial prestressing forces and the prestress changes during a vehicle load test were measured using the FBG-encapsulated strand. The results show that the FBG-encapsulated 7-wire strand is very effective for monitoring the prestress forces even the change in the tension force is very small. Additionally, it was indicated that selection of the thermal expansion coefficient which is used for the temperature correction shall be carefully carried out.

Shear Strength of Concrete Deep Beam Reinforced AFRP rebar (AFRP rebar로 보강된 콘크리트 깊은보의 전단강도)

  • Lee, Young-Hak;Kim, Min-Sook;Cho, Jang-Se;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • This study carried out a shear experiment on concrete deep beam reinforced AFRP to investigate the shear strength of deep beam. The test was conducted on 8 specimens, and the variables were shear span ratio, reinforcement ratio, effective depth, and rebar type. We compared shear strength using ACI 318-08 STM with proposed equations that considered arching action according to shear span ratio. As a result, it was found that shear strength of deep beam reinforced AFRP rebar presented higher shear strength than steel rebar. ACI STM's predictions are more accurate than other predicting equations, and thus this research proposed model versus effective compressive strength of the concrete strut that considered strut size effect based on test results. The predictions obtained using the proposed model are in better agreement than previous equations and codes.

Workability and Strength Characteristics of Lathe Scrap Reinforced Cementitious Composites (선반 스크랩 보강 시멘트 복합체의 작업성 및 강도 특성)

  • Lee, Hyun-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Kim, Sung-Wook;Park, Jung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.40-45
    • /
    • 2016
  • It should be noted that the use of the lathe scrap for making fiber reinforced cementitious composites raised friendly environmental effect as well as economy because the lathe scrap is a by-product of steel manefactures and is occurred when lathe and milling works of them are conducted to process steel manufactures. Thus, the purpose of this experimental research is to investigate workability and strength characteristics of lathe scrap reinforced cementitious composites(LSRCCs). For this purpose, three types of lathe scraps were collected from processing plants of metal, and then LSRCCs containing these were made for 2mm width and 40mm length. As a result, it was observed from the test results that the workability of LSRCCs was slightly decreased than plain mortar and the flexural strength of LSRCCs were much larger than these of plain mortar and effect of types of lathe scrap on the characteristics of LSRCCs were somewhat large.

Evaluation of Moment Resistance of Rigid Frame with Glued Joint (강절형 목질접합부의 모멘트저항성능 평가)

  • Lee, In-Hwan;Song, Yo-Jin;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.28-35
    • /
    • 2017
  • In this study, specimens of rigid frame joint were produced by integrating joints with adhesive and other specimens were produced by inserting a wooden gusset integrated with a column member into a slit-processed beam member and joining them with pins. Then the moment resistance performances of the specimens were examined. For the wooden gusset, a GFRP-reinforced wooden gusset was used. The calculation results of perfect elasto-plasticity for the frame specimens for which a GFRP-reinforced wooden gusset was inserted into and joined with the slit-processed beam member by pins were 20-80% lower compared to the control group which consisted of steel plate-inserted frame specimens. The rigid frame specimens for which the column and beam members have been integrated with adhesive showed almost no initial residual transformations, as well as 38% greater initial rigidity and 41% greater plasticity compared to the steel plate-inserted joint.

Study on Buckling of Composite Laminated Cylindrical Shells with Transverse Rib (횡리브로 보강된 복합적층 원통형 쉘의 좌굴거동에 관한 연구)

  • Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.493-500
    • /
    • 2004
  • In this study, the effects of ring stiffeners for buckling of cylindrical shells with composite materials were analyzed. The finite element method was used: 3-D beam elements were used for stiffeners and flat shell elements were used for cylindrical shells and were improved by introducing a substitute shear strain. The ring stiffeners were of the transverse rib type. The buckling behaviors of the cylindrical shells were analyzed based on various parameters, such as locations and sizes of stiffeners, diameter/length ratios and boundary conditions of shells, and fiber-reinforced angles. Effective reinforcement was examined by understanding the exact behaviors for buckling. The results of the analysis may serve as references for designs and future investigations.

Modern Laser Technology and Metallurgical Study on Laser Materials Processing

  • Kutsuna, Muneharu
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.561-569
    • /
    • 2002
  • Laser has been called a "Quantum Machine" because of its mechanism of generation since the development on July 7,1960.by T.H.Maiman. We can now use this machine as a tool for manufacturing in industries. At present, 45kW CO2 laser, 10kW Nd:YAG laser, 6kW LD pumped YAG laser and 4kW direct diode laser facilities are available for welding a heavy steel plate of 40mm in thickness and for cutting metals at high speed of 140m/min. Laser Materials Processing is no longer a scientific curiosity but a modern tool in industries. Lasers in manufacturing sector are currently used in welding, cutting, drilling, cladding, marking, cleaning, micro-machining and forming. Recently, high power laser diode, 10kW LD pumped YAG laser, 700W fiber laser and excimer laser have been developed in the industrialized countries. As a result of large numbers of research and developments, the modem laser materials processing has been realized and used in all kinds of industries now. In the present paper, metallurgical studies on laser materials processing such as porosity formation, hot cracking and the joint performances of steels and aluminum alloys and dissimilar joint are discussed after the introduction of laser facilities and laser applications in industries such as automotive industry, electronics industry, and steel making industry. The wave towards the use of laser materials processing and its penetration into many industries has started in many countries now. Especially, development of high power/quality diode laser will be accelerate the introduction of this magnificent tool, because of the high efficiency of about 50%, long life time and compact.

  • PDF

Long-Term Performance Evaluation of a GFRP Slab Bridge (GFRP 슬래브 교량의 장기성능 평가)

  • Ji, Hyo-Seon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.349-360
    • /
    • 2012
  • This paper describes a detailed assessment of the structural safety, serviceability, capacity rating and long-term performance of a glass fiber-reinforced polymer (GFRP) slab bridge superstructure. This first all-GFRP slab bridge was installed in Korea on May 2002. The GFRP slab bridge is a simply supported, its length is 10.0 m, and is designed to carry two-lane traffic and has an overall width of 8.0m. The GFRP slab bridge is a sandwich structure with a corrugated core, fabricated by hand lay-up process with E-glass fibers and vinyl ester resins. The assessment of long-term performance for the GFRP slab bridge in 2004, 2011 includes a field load testing identical to that performed in 2002. The assessment indicates that the GFRP slab bridge has no structural problems and is structurally performing well in-service as expected. The assessment may provide a baseline data for the capacity ratings assessment of the GFRP slab bridge and also serve as part of a long-term performance of all-GFRP bridge superstructure.

A Study on the Structural Controlling of Al-Si Alloy by Using Electromagnetic Vibration (전자기 진동을 이용한 Al-Si 합금의 조직 제어에 관한 연구)

  • Choi, Jung-Pyung;Kim, Ki-Bae;Nam, Tae-Woon;Yoon, Eui-Pak
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.205-210
    • /
    • 2006
  • The structural control of Al-Si alloy, which was not studied among various electromagnetic processing of materials, was considered applying the alternating current and direct current magnetic flux density. The main aim of the present study is to investigate the effects of electromagnetic vibration on the macro and microstructure of Al-Si alloy in order to develop a new process of structural control in Al-Si alloy. When the electromagnetic vibration is conducted for changing the shape of primary aluminum, at low frequency(>60Hz), the shape of dendrite is changed speroidal shape. When the electromagnetic vibration is conducted for changing the shape of eutectic silicon, the fact that a morphological change of the eutectic silicon from coarse platelet flakes to fine fiber shape is observed and the improvement of the mechanical properties is achieved with EMV (Electro Magnetic Vibration) process at high frequency(>500Hz).

Analysis of Confinement Effectiveness for FRP Confined Concrete Columns (FRP로 구속된 콘크리트 압축부재의 구속효과 분석)

  • Choi, Eunsoo;Choi, Seung-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.19-24
    • /
    • 2011
  • Concrete columns strengthening effect due to FRP (Fiber Reinforced Polymer) confinement depends on the elastic modulus of the FRP. This study analyzes the retrofitting effect of FRP confinements according to elastic modulus of FRPs using the existing data and suggests a practical model to assess the strengthening effect. This study subdivides the FRP elastic modulus into three parts based on normal concrete and steel elastic modulus. The slope and the y-axis intersection seem to increase with increasing FRP elastic modulus. In addition, the strengthening effect does not develop up to some amount of FRP confinement having relatively smaller elastic modulus than the compressive elastic modulus of concrete. In this case, a linear model to assess the strengthening effect is hard to be used. Thus, this study suggests that the FRP jackets having 2 times larger elastic modulus than that of concrete are recommended to be used for retrofit of concrete and that a linear model can be applied for the case. The suggested model shows nearly the same result regardless to the restraint of the y-axis intersection. This has been observed at the model of steel confinement and, thus, is a reliable result.

Parametric Analysis on Ultimate Behavior of Cylindrical GFRP Septic Tank (원통형 GFRP 개인하수 처리시설의 극한거동에 대한 매개변수해석)

  • Kim, Sung Bo;Cho, Kwang Je
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1337-1347
    • /
    • 2013
  • The parametric analysis on ultimate behavior of buried cylindrical GFRP(Glass Fiber Reinforced Polymer) septic tank was presented. Two kinds of F.E. analysis model(soil-spring model and 3D full model) was constructed. The ultimate behavior of septic tank was investigated according to the size of stiffened steel ring and properties of underground soil. Ramberg-Osgood model and Druker-Prager model were used for material nonlinear characteristics of GFRP septic tank and soil, respectively. The diameter and thickness of stiffened steel ring inside septic tank, elastic modulus and internal friction angle of soil were selected for parametric variables. The ultimate behavior of septic tank, load-displacement, axial and hoop strain, were calculated and investigated.