• Title/Summary/Keyword: fiber-reinforced material

Search Result 1,157, Processing Time 0.049 seconds

Evaluation of Flexural Stiffness Considering Flexural Tensile Strength of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 휨인장강도 특성을 고려한 휨강성 평가)

  • Hong, Geon-Ho;Jung, Seong-Won
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.8
    • /
    • pp.131-138
    • /
    • 2019
  • Since concrete has a low tensile strength compared to the compressive strength, reinforced concrete flexural members represent easy crack occurance under a small load. In order to overcome this problem, steel fiber reinforced concrete has been developed to compensate the tensile strength and brittleness of members. However, in the design formula of the domestic building code, it is not specified in the design formula reflecting the material characteristics. Therefore, the field application of the steel fiber reinforced concrete have had many restrictions. In this study, a flexural tensile strength model of steel fiber reinforced concrete is proposed by collecting and analyzing the material properties of material test results conducted by various researchers, and verified by the test results of cracking and stiffness evaluation of flexural members based on the proposed model. As a result of this study, the flexural tensile strength model of steel fiber reinforced concrete which can reflect the mixing ratio and aspect ratio of the steel fiber was proposed and the validity of the proposed material model equation was evaluated from the load-deflection relationship in the flexural test of the slab member.

Material property of fiber reinforced concrete according to the fiber blended ratio (섬유 혼입 비율에 따른 섬유보강 콘크리트의 재료특성)

  • Park Choon Gun;Kim Nam Hol;Lee Jong Pil;Kim Hag Youn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.632-635
    • /
    • 2004
  • In this paper, material property of fiber reinforced concrete(FRC) according to the steel fiber, glass fiber and carbon fiber blended ratio. The fiber reinforced concretes are increased mechanical strength, because the fibers are dispersed with randomly direction and disturb crack progression in concretes. Adhesive fracture is occurred slowly at interface between fiber and concrete, and the fracture energy is absorbed due to softening phenomenon.

  • PDF

Material Model for Compressive and Tensile Behaviors of High Performance Hybrid Fiber Reinforced Concrete (고성능 하이브리드 섬유보강 콘크리트의 압축 및 인장 거동에 대한 재료모델)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.311-321
    • /
    • 2021
  • Many studies have been performed on hybrid fiber reinforced concrete for years, which is to improve some of the weak material properties of concrete. Studies on characteristics of hybrid fiber reinforced concrete using amorphous steel fiber and organic fiber, however, yet remain to be done. The purpose of this research is to evaluate the compressive and tensile behaviors and then propose a material model of high performance hybrid fiber reinforced concrete using amorphous steel fiber and polyamide fiber. For this purpose, the high performance hybrid fiber reinforced concretes were made according to their total volume fraction of 1.0% for target compressive strength of 40MPa and 60MPa, respectively, and then the compressive and tensile behaviors of those were evaluated. Also, based on the experimental results of the high performance hybrid fiber reinforced concrete and mortar, each material model for the compressive and tensile behavior was suggested. It was found that the experimental results and the proposed models corresponded relatively well.

Performance Evaluation of Sprayed Ductile Fiber-Reinforced Mortar as a Repairing Material

  • Kang, Su-Tae;Koh, Kyung-Taek;Ryu, Gum-Sung;Kim, Jin-Soo;Han, Cheon-Goo
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 2008
  • Most of existing repair materials have some shortcomings such as brittle fracture, imperfect interface bonding and marked difference in modulus of elasticity compared with the structures. These problems make their repair inefficient. Some researches on using a fiber-reinforced mortar as an alternative to enhance the efficiency have been carried out recently. This paper presents the results of an experimental study on the performance of sprayed PVA fiber-reinforced mortar as a repair material. We evaluated its mechanical properties, durability and strengthening effect. This study shows that the sprayed PVA fiber-reinforced mortar is remarkably effective as a repair material.

Implant Restorations Using Fiber Reinforced Framework (Fiber Reinforced Framework를 이용한 Implant 수복증례)

  • Song, Ho-Yong;Lee, Yang-Jin;Jo, Ri-Ra
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.10 no.2
    • /
    • pp.21-30
    • /
    • 2001
  • Fiber reinforced materials have favorable mechanical properties. Moreover, the strength to weight ratios of this material is superior to those of most alloys. Comparing to the metals, it showed many other advantages as well, including non-corrosiveness, translucency and easy repair characteristic. Since, it has the potential for the chair-side and laboratory fabrication, it is not surprising that fiber reinforced composites offer the potential for use in various applications in dentistry. To make the well-fitted restorations, Fiber reinforced composite (FRC) has been suggested as an alternative framework material for the implant supported fixed prosthesis. Two fixed partial denture fabrication procedures were tried. Vectris fiber was pressed to the EsthetiCone gold cylinder on the implant positioned cast. And then, Targis were added on it. In the other method, we used the customized component using UCLA abutment. The beads for retaining the Vectris fiber were added on the abutment. If careful laboratory and clinical techniques were done, these two techniques would fulfill the demands of the esthetics and strength.

  • PDF

Effective Material Properties of Composite Materials by Using a Numerical Homogenization Approach (균질화 접근법을 통한 복합재의 유효물성치 계산)

  • Anto, Anik Das;Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.28-37
    • /
    • 2019
  • Due to their flexible tailoring qualities, composites have become fascinating materials for structural engineers. While the research area of fiber-reinforced composite materials was previously limited to synthetic materials, natural fibers have recently become the primary research focus as the best alternative to artificial fibers. The natural fibers are eco-friendly and relatively cheaper than synthetic fibers. The main concern of current research into natural fiber-reinforced composites is the prediction and enhancement of the effective material properties. In the present work, finite element analysis is used with a numerical homogenization approach to determine the effective material properties of jute fiber-reinforced epoxy composites with various volume fractions of fiber. The finite element analysis results for the jute fiber-reinforced epoxy composite are then compared with several well-known analytical models.

Fabrication of SiC Fiber Reinforced Porous Reaction Bonded SiC Composite and Its Mechanical Properties (SiC Fiber 강화 다공질 반응 소결 탄화규소 Composite의 제조 및 기계적 특성)

  • Han, Jae-Ho;Park, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.8 s.291
    • /
    • pp.509-514
    • /
    • 2006
  • In this study, chopped Hi-Nicalon SiC fiber Reinforced Porous Reaction Bonded SiC (RBSC) composites and it fabrication process were developed by using Si melt infiltration process. The porosity and average pore size in fabricated chopped SiC fiber reinforced porous RBSC composites were in the range of $30{\sim}40%$ and $40-90{\mu}m$, which mainly determined by the SiC powder size used as starting material and amount of residual Si in porous composites. The maximum flexural strength of chopped SiC fiber reinforced porous RBSC composite was as high as 80 MPa. The delayed fracture behavior was observed in chopped SiC fiber reinforced porous RBSC composites upon 3-point bending strength test.

Thermal Characteristics of Hybrid Composites for Application to Surfboard (서프보드 적용을 위한 하이브리드 복합재료의 열적 특성)

  • Kim, Yun-Hae;Lee, Jin-Woo;Park, Chang-Wook;Park, Soo-Jeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.351-355
    • /
    • 2014
  • Today, carbon fibers are used as heating elements. Carbon fibers are generally used to reinforce composite materials because they are lightweight and have a high strength and modulus. Carbon fiber reinforced composite materials are used for aerospace, automobile, and wind turbine blade applications. This work explored the possibility of using carbon fiber reinforced composite materials as self heating materials. The temperatures of the carbon fiber reinforced composites were measured. These results verified that the carbon fiber reinforced composite materials could be used as heating elements. A glass fiber was laminated using various methods. The thermal characteristics of the composites were evaluated. This confirmed that the generation of heat varied according to the lamination thicknesses of the carbon fiber and glass fiber. As the number of carbon fiber laminations increased, the heat-generating temperature increased. In contrast, as the number of glass fiber laminations increased, the amount of heat decreased. The generation of heat and ability to remain warm could be controlled by controlling the carbon fiber and glass fiber laminations.

A Study on the Improvement for Construction Performance of Fiber Reinforced Cementitious Composites (섬유 보강 시멘트 복합체의 시공성 향상에 관한 연구)

  • Koh, Kyung-Taeg;Park, Jung-Jun;Ryu, Gum-Sung;Kang, Su-Tae;Ahn, Ki-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.393-396
    • /
    • 2006
  • This study present the experimental research investigating the influence of material factors such as a type or amount of superplasticizer, velocity agent, mineral admixture and steel fiber on the construction performance of fiber reinforced cementitious composites. As for the test results, it was found that the workability of fiber reinforced cementitious composites can be improved when the material factors were matched properly in amount and composition. Furthermore, it was shown that the smaller value of the aspect ratio of fiber improved the workability of fiber reinforced cementitious composites. And the fiber reinforced cementitious composites with better workability showed the enhanced compressive strength and flexural strength.

  • PDF