• 제목/요약/키워드: fiber surface treatment

검색결과 487건 처리시간 0.02초

Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung;Kim, Seyoung;Kim, Soo-hyun;Han, In-sub;Seong, Young-hoon;Bang, Hyung Joon
    • Journal of Ceramic Processing Research
    • /
    • 제20권1호
    • /
    • pp.48-53
    • /
    • 2019
  • Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

Improvement of CF/ABS Composite Properties by Anodic Oxidation of Pitch based C-type Carbon Fiber

  • Yang, Xiao Ping;Wang, Cheng Zhong;Yu, Yun Hua;Ryu, Seung-Kon
    • Carbon letters
    • /
    • 제3권2호
    • /
    • pp.80-84
    • /
    • 2002
  • The surface treatment of C-type isotropic pitch-based carbon fiber was carried out by anodic oxidation in 5 wt% $NH_4NO_3$ electrolyte. The changes of fiber surface and carbon fiber/ABS resin composites were characterized by SEM, XPS and mechanical properties test. The oxygen functional groups on the surface, such as hydroxyl (-C-OH), carboxyl (-COOH) groups etc., increased after oxidation. Tensile strength, flexural strength and modulus of carbon fiber/ABS composites were also enhanced. However, the impact strength decreased with the improvement of the surface adhesion between CF and matrix.

  • PDF

Effects of Fiber Surface-Treatment and Sizing on the Dynamic Mechanical and Interfacial Properties of Carbon/Nylon 6 Composites

  • Cho, Dong-Hwan;Yun, Suk-Hyang;Kim, Jun-Kyung;Lim, Soon-Ho;Park, Min;Lee, Geon-Woong;Lee, Sang-Soo
    • Carbon letters
    • /
    • 제5권1호
    • /
    • pp.1-5
    • /
    • 2004
  • The effects of fiber surface-treatment and sizing on the dynamic mechanical properties of unidirectional and 2-directional carbon fiber/nylon 6 composites by means of dynamic mechanical analysis have been investigated in the present study. The interlaminar shear strengths of 2-directional carbon/nylon 6 composites sized with various thermosetting and thermoplastic resins are also measured using a short-beam shear test method. The result suggests that different surface-treatment levels onto carbon fibers may influence the storage modulus and tan ${\delta}$ behavior of carbon/nylon 6 composites, reflecting somewhat change of the stiffness and the interfacial adhesion of the composites. Dynamic mechanical analysis and short-beam shear test results indicate that appropriate use of a sizing material upon carbon fiber composite processing may contribute to enhancing the interfacial and/or interlaminar properties of woven carbon fabric/nylon 6 composites, depending on their resin characteristics and processing temperature.

  • PDF

오존처리(處理) 고수율(高收率)펄프의 고해(叩解) 특성(特性)(I) - 오존처리(處理) 펄프 고해후(叩解後) 섬유장(纖維長) 분포(分布) - (The Beating Properties of High Yield Pulp Treated Ozone(I) - Fiber Length Distribution of Ozonenation Pulp for Beating -)

  • 윤승락;코지마 야스오
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권2호
    • /
    • pp.75-80
    • /
    • 1997
  • This research has been examined to measure the degree of the fiber damage of ozonenation high yield pulp in the beating process. Ozone treated the TMP(Thermomechanical Pulp) and CTMP(Chemithermomechanical Pulp) of spruce and the CTMP of birch has been beaten to be reached 200ml(freeness) of its content. It had been studied the forming of fiber distribution by treatment for long fiber, short fiber, fine with the above method. As ozone treatment time gets longer, the pulp has showed the tendency of increasing the fiber content of 28, 48mesh. Ozone treated fiber has been increased long fiber content by being added softness. By given longer ozone treatment time, the TMP and CTMP of spruce has showed the decreasing of fiber content. On the contrary, CTMP of birch has showed the increasing its fiber content. It had proved that the results of difference are rather closer to the species of tree than closer to the kinds of pulp. The fiber content of over 200mesh which has created in beating process demonstrates the decreasing of its fiber content by getting longer ozone treatment time. The softness of fiber can be extracted by the lignin of fiber surface that had been formed by ozone treatment. Thus we assume that the fiber in the process of beating obtains less physical damage.

  • PDF

White ledger 오존 탈묵의 현미경적 관찰 (Microscopic Observation of White Ledger Ozone Deinking)

  • 원종명;윤승락
    • 펄프종이기술
    • /
    • 제32권2호
    • /
    • pp.40-44
    • /
    • 2000
  • A microscopic study was carried out to get the fundamental informations for the ozone deinking technology. The differential interference microscopic observation showed that ozone treatment was helpful to detach the toner ink from the surface of pulp fiber. The modifications of fiber surfaces by ozone treatment were observed with scanning electron microscope. Modification of fiber surfaces was not severe at the early stage of ozone treatment, but it increased with ozone treatment time and pulp consistency, Therefore, it would be possible to improve the properties of deinked pulp by controlling the condtion of ozone treatment.

  • PDF

표면처리된 PET 섬유와 PP 복합재료에 관한 연구 (A Study on Polypropylene and Surface Modified PET Fiber Composites)

  • 함문석;김창현;류주환
    • 폴리머
    • /
    • 제32권1호
    • /
    • pp.7-12
    • /
    • 2008
  • 폴리(에틸렌 테레프탈레이트) (PET) 섬유는 폴리프로필렌(PP)에 비해 높은 기계적 물성과 용융온도를 갖고있어 폴리프로필렌의 기계적 물성을 향상시키기 위한 섬유강화재료로 사용이 가능함을 확인하였다. 그러나 PP와 PET 섬유는 상용성이 부족하여 복합재료의 기계적 물성이 저하되었으며 PET 섬유의 구조적인 특성상 PP-g-MAH를 첨가하여도 효과가 부족하였다. 이러한 문제점을 해결하기 위해 NaOH 수용액으로 PET 섬유의 표면처리를 하여 PET 섬유의 표면에 친수성기를 도입하였으며 상용화제로서 PP-g-MAH를 첨가하여 기계적 물성이 우수한 PP/PET 섬유 복합재료를 제조하고 SEM과 IR의 결과와 물성의 거동을 상호 관련지었다.

플라즈마처리가 폴리에스테르 직물의 오염제거성에 미치는 연구 (Influence of Plasma Treatment on The Soil Release Properties of Polyester Fabrics)

  • Kwon, Young-Ah
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.434-435
    • /
    • 2003
  • Physicochemical properties of a polymer surface significantly affect adhesion, wetting, and dyeing properties. In recent years, low temperature plasma technology has been widely used for surface modification of polymers. Surface fluorination by low temperature plasma treatment has been employed to improve the water and oily repellency of textile fabrics. However, very few results have been reported on soil release properties of the oxygen plasma treated textile fabrics. (omitted)

  • PDF

KOH 처리 면직물의 물성 및 염색성 (The Physical Properties and Dyeability of KOH Treated Cotton Fabrics)

  • 송현주;김수미;송화순
    • 한국의류산업학회지
    • /
    • 제7권1호
    • /
    • pp.91-95
    • /
    • 2005
  • The purpose of this study is to investigate the improvement of fiber surface, physical properties and research the physical properties and dyeability of cotton fabrics treated with KOH solution at low and high temperature. The treatment conditions for mercerization with KOH were changed various temperatures(25, $90^{\circ}C$), concentrations(15, 20, 25, 30%. w/v) and times(30, 60, 180, 300sec). The effects of mercerization after KOH treatment estimated with tensile strength, tearing strength, shrinkage, drape stiffness, moisture regain, fiber surface, and dyeability. The optimal conditions were concentration of KOH 20%, time 180sec in low temperature and concentration of KOH 20%, time 60sec in high temperature. The results are as follows; Tensile strength, tearing strength and moisture regain were much improved than those of untreated cotton fabric. Shrinkage and drape stiffness of KOH treated cotton were more increased at $25^{\circ}C$ than $90^{\circ}C$. Fiber surface showed more rounded shape at $25^{\circ}C$ than $90^{\circ}C$. Dyeability of cotton fabrics improved by KOH treatment.

파이버 레이저를 이용한 치과용 임플란트 표면처리에 관한 연구 (A Study on the Surface Treatment of Dental Implant using a Fiber Laser)

  • 신호준;양윤석;황찬연;유영태
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.915-928
    • /
    • 2011
  • Titanium for dental implant application has the superior properties of biocompatibility, specific strength, and corrosion resistance. However, it is extremely difficult to find a suitable surface treatment method for sufficient osseointegration with biological tissue/bone cell and implant surface. Surface treatment technology using laser has been researched as the way to increase surface area of implant. In this study, to develop the surface treatment process with improved adhesion between implant and bone cell at the same time for superior biocompatibility, pulsed laser beam was overlapped continuously for scribed surface morphology and determination of friction coefficient. As the results, surface area and friction coefficient was increased over 2 times by the comparison with sand blasting, which is used for the conventional method. In this time, the optimal condition for laser beam power and beam irradiation speed was 13 watt and 50 mm/sec, respectively.