• 제목/요약/키워드: fiber reinforced polymers(FRP)

검색결과 73건 처리시간 0.027초

Sprayed FRP로 보강된 철근콘크리트 보의 보강성능에 관한 연구 (Structural Performance of Reinforced Concrete Beams Strengthened with Sprayed Fiber Reinforced Polymers)

  • 이강석;손영선;이문성
    • 콘크리트학회논문집
    • /
    • 제19권4호
    • /
    • pp.421-431
    • /
    • 2007
  • 본 연구의 주 목적은 유리 및 탄소단섬유 (chopped fiber)와 에폭시 및 비닐에스터수지 (resin)를 외기에서 혼합하여 요철이 많은 콘크리트 표면에 고속의 압찰 공기로 랜덤하게 분사하여 기존 콘크리트 구조물을 보강하는 새로운 공법, 즉 sprayed FRP 보수보강 공법을 개발하는 것으로서, 본 연구에서는 sprayed FRP 보강을 위한 치적의 재료 물성치를 제시하고자 유리 및 탄소단섬유의 길이, 단섬유와 에폭시 및 비닐에스터수지의 배합 비율 등을 주요변수로 설정하여 재료 인장시험을 실시하였다. 또한 상기 재료 시험 결과를 바탕으로 sprayed FRP 공법을 이용하여 보강된 철근콘크리트 휨 보, 전단 보 및 손상 보의 보강 성능을 실험적 연구를 토대로 평가하였다. 그 결과, 유리 및 탄소단섬유의 길이 38 mm, 섬유와 수지의 배합 비율 1 : 2가 최적 물성치로 제안되었으며, sprayed FRP의 휨 및 전단 보의 보강 효과는 기존 FRP sheet와 유사한 보강 효과를 나타냈으며, 손상 보의 경우 최대 강도의 결과를 비교해보면 보강 보와 동등한 보강 효과가 나타났다. 기존 FRP 설계식의 적용 가능성을 분석해본 결과, sprayed FRP 휨실험체의 경우 기존설계식의 적용이 가능한 것으로 드러났으며, 전단실험체의 경우는 전단강도 저감계수 ${\alpha}=0.18$이 실험값과 근접한 범위 내에서 안전 측으로 설계가 되는 것으로 사료된다.

폐 FRP를 혼입한 바닥미장모르타르의 물리적 특성 (Physical Properties of Plastering Mortar with Waste FRP for the Floor)

  • 김성환;이국재;박종원;백주현
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.17-20
    • /
    • 2008
  • This study investigated the fundamental properties and cracking shapes of mortar for the floor after Mock-up test with FRP as wastes of crafts. For the flowability of fresh mortar without FRP, it was favorable compared with fresh mortar using FRP, and the drop time at O-Lot was similar to the flowability. For the compressive strength of fresh mortar with FRP, it was increased about 10% compared with plain. The flexible strength was also increased on fresh mortar with FRP. On the cracking shape, there was many penetrated crack in all directions on plain. In the case that FRP was used, it seemed to have excellent resistance to the crack occurrence because there was no directive crack at a limited part.

  • PDF

Shear-Strengthening of Reinforced & Prestressed Concrete Beams Using FRP: Part II - Experimental Investigation

  • Kang, Thomas H.K.;Ary, Moustapha Ibrahim
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권1호
    • /
    • pp.49-57
    • /
    • 2012
  • The main objectives of this research were to experimentally evaluate the impact of Carbon Fiber-Reinforced Polymers (CFRP) amount and strip spacing on the shear behavior of prestressed concrete (PC) beams and to evaluate the applicability of existing analytical models of Fiber-Reinforced Polymer (FRP) shear capacity to PC beams shear-strengthened with CFRP. The Ushaped CFRP strips with different spacing were applied externally to the test specimens in order to observe the overall behavior of the prestressed concrete I-beams and the mode of failure of the applied CFRP strips. Results obtained from the experimental program showed that the application of CFRP strips to prestressed concrete I-beams did in fact enhance the overall behavior of the specimens. The strengthened specimens responded with an increase in ductility and in shear capacity. However, it should be noted that the CFRP strips were not effective at all at spacing greater than half the effective depth of the specimen and that fracture of the strips was the dominant failure mechanism of CFRP. Further research is needed to confirm the conclusion derived from the experimental program.

Axial loading tests and load capacity prediction of slender SHS stub columns strengthened with carbon fiber reinforced polymers

  • Park, Jai-Woo;Yoo, Jung-Han
    • Steel and Composite Structures
    • /
    • 제15권2호
    • /
    • pp.131-150
    • /
    • 2013
  • This paper presents the experimental results of axially loaded stub columns of slender steel hollow square section (SHS) strengthened with carbon fiber reinforced polymers (CFRP) sheets. 9 specimens were fabricated and the main parameters were: width-thickness ratio (b/t), the number of CFRP ply, and the CFRP sheet orientation. From the tests, it was observed that two sides would typically buckle outward and the other two sides would buckle inward. A maximum increase of 33% was achieved in axial-load capacity when 3 layers of CFRP were used to wrap HSS columns of b/t = 100 transversely. Also, stiffness and ductility index (DI) were compared between un-retrofitted specimens and retrofitted specimens. Finally, it was shown that the application of CFRP to slender sections delays local buckling and subsequently results in significant increases in elastic buckling stress. In the last section, a prediction formula of the ultimate strength developed using the experimental results is presented.

Low velocity impact behavior of shear deficient RC beam strengthened with CFRP strips

  • Anil, Ozgur;Yilmaz, Tolga
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.417-439
    • /
    • 2015
  • Many methods are developed for strengthening of reinforced concrete structural members against the effects of shear. One of the commonly used methods in recent years is turned out to be bonding of fiber reinforced polymers (FRP). Impact loading is one of the important external effects on the reinforced concrete structural members during service period among the others. The determination of magnitude, the excitation time, deformations and stress due to impact loadings are complicated and rarely known. In recent year impact behavior of reinforced concrete members have been researched with experimental studies by using drop-weight method and numerical simulations are done by using finite element method. However the studies on the strengthening of structural members against impact loading are very seldom in the literature. For this reason, in this study impact behavior of shear deficient reinforced concrete beams that are strengthened with carbon fiber reinforced polymers (CFRP) strips are investigated experimentally. Compressive strength of concrete, CFRP strips spacing and impact velocities are taken as the variables in this experimental study. The acceleration due to impact loading is measured from the specimens, while velocities and displacements are calculated from these measured accelerations. RC beams are modeled with ANSYS software. Experimental result and simulations result are compared. Experimental result showed that impact behaviors of shear deficient RC beams are positively affected from the strengthening with CFRP strip. The decrease in the spacing of CFRP strips reduced the acceleration, velocity and displacement values measured from the test specimens.

Sprayed FRP로 보강된 철근 콘크리트 전단기둥의 보강성능 평가 (Structural Performance of Reinforced Concrete Shear Columns Strengthened with Sprayed Fiber Reinforced Polymers)

  • 이강석;변인희;이문성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제11권3호
    • /
    • pp.132-142
    • /
    • 2007
  • 본 연구에서는 Sprayed FRP 공법을 이용하여 보강된 철근 콘크리트 전단 파괴형 기둥의 구조성능을 평가하기 위하여 2/3 크기로 축소된 총 6개의 기둥 실험체를 제작하여, 일정한 축하중 (0.1Agfc')하에서 반복 횡하중을 가력한 구조 실험을 수행하였다. 4개의 실험체는 유리 및 탄소 단섬유와 에폭시 및 비닐에스테르 수지를 조합하여 Sprayed FRP로 보강하였으며, 또한 비교 목적을 위하여 고강도 탄소섬유시트(CFS)로 보강된 실험체 1개와 무 보강 실험체 1개를 포함하였다. 실험결과, Sprayed FRP로 보강된 실험체의 최대내력은 무 보강 실험체 대비 10~30%가 증가 하였을 뿐만 아니라, 연성은 약 1.15배 향상되어, 본 연구에서 제안한 Sprayed FRP 공법은 충분한 보강효과가 기대되는 신기술 이라고 판단된다.

Determination of plastic hinge properties for static nonlinear analysis of FRP-strengthened circular columns in bridges

  • Amiri, Gholamreza Ghodrati;Jahromi, Azadeh Jaberi;Mohebi, Benyamin
    • Computers and Concrete
    • /
    • 제10권5호
    • /
    • pp.435-455
    • /
    • 2012
  • In the recent years, rehabilitation of structures, strengthening and increasing the ductility of them under seismic loads have become so vital that many studies has been carried out on the retrofit of steel and concrete members so far. Bridge piers are very important members concerning rehabilitation, in which the plastic hinging zone is very vulnerable. Pier is usually confined by special stirrups predicted in the design procedure; moreover, fiber-reinforced polymers (FRP) jackets are used after construction to confine the pier. FRP wrapping of the piers is one of the most effective ways of increasing moment and ductility capacity of them, which has a growing application due to its relative advantages. In many earthquake-resistant bridges, reinforced concrete columns have a major defect which could be retrofitted in different ways like using FRP. After rehabilitation, it is important to check the strengthening adequacy by dynamic nonlinear analysis and precise modeling of material properties. If the plastic hinge properties are simplified for the strengthened members, as the simplified properties which FEMA 356 proposes for non-strengthened members, static nonlinear analysis could be performed more easily. Current paper involves this matter and it is intended to determine the plastic hinge properties for static nonlinear analysis of the FRP-strengthened circular columns.

Hybrid Effects of Carbon-Glass FRP Sheets in Combination with or without Concrete Beams

  • Kang, Thomas H.K.;Kim, Woosuk;Ha, Sang-Su;Choi, Dong-Uk
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권1호
    • /
    • pp.27-41
    • /
    • 2014
  • The use of carbon fibers (CF) and glass fibers (GF) were combined to strengthen concrete flexural members. In this study, data of tensile tests of 94 hybrid carbon-glass FRP sheets and 47 carbon and GF rovings or sheets were thoroughly investigated in terms of tensile behavior. Based on comparisons between the rule of mixtures and test data, positive hybrid effects were identified for various (GF/CF) ratios. Unlike the rule of mixtures, the hybrid sheets with relatively low (GF/CF) ratios also produced pseudo-ductility. From the calibrated results obtained from experiments, a new analytical model for the stress-strain relationship of hybrid FRP sheets was proposed. Finally, the hybrid effects were verified by structural tests of concrete members strengthened with hybrid FRP sheets and either carbon or glass FRP sheets.

Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites

  • Kim, Seong Hwang;Heo, Young-Jung;Park, Soo-Jin
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.517-527
    • /
    • 2019
  • To move forward in large steps rather than in small increments, the community would benefit from a systematic and comprehensive database of multi-scale composites and measured properties, driven by comprehensive studies with a full range of types of fiber-reinforced polymers. The multi-scale hierarchy is a promising chemical approach that provides superior performance in synergistically integrated microstructured fibers and nanostructured materials in composite applications. Achieving high-efficiency thermal conductivity and mechanical properties with a simple surface treatment on single-walled carbon nanotubes (SWCNTs) is important for multi-scale composites. The main purpose of the project is to introduce ozone-treated SWCNTs between an epoxy matrix and basalt fibers to improve mechanical properties and thermal conductivity by enhancing dispersion and interfacial adhesion. The obvious advantage of this approach is that it is much more effective than the conventional approach at improving the thermal conductivity and mechanical properties of materials under an equivalent load, and shows particularly significant improvement for high loads. Such an effort could accelerate the conversion of multi-scale composites into high performance materials and provide more rational guidance and fundamental understanding towards realizing the theoretical limits of thermal and mechanical properties.

하이브리드 FRP로 보강된 콘크리트 보의 거동 예측을 위한 해석연구 (Analytical Studies for Predicting Behaviors of RC Beams Retrofitted with Hybrid FRPs)

  • 우투이 나디아;김희선
    • 복합신소재구조학회 논문집
    • /
    • 제2권2호
    • /
    • pp.1-6
    • /
    • 2011
  • 본 연구는 하이브리드 FRP로 보강된 철근 콘크리트 보의 구조거동 예측을 목표로 구조해석을 수행하여 기존에 발표된 실험 연구 데이터와 비교하였다. 보다 정확한 구조해석을 위하여 현존하는 다양한 부착강도 모델을 검토한 후, 이 중 콘크리트 피복분리를 예측하는 Teng and Yao model과 FRP 탈락 현상을 예측할 수 있는 Smith and Teng model을 유한요소 해석 모델에 포함시켰다. 비선형 재료 및 형상 역시 구조해석 모델에 포함되었으며 이렇게 해석된 결과는 실험결과와 비교하여 유사한 경향을 나타냈다. 그러나 다양한 하이브리드 FRP로 보강한 철근 콘크리트 보의 파괴모드를 보다 정확하게 예측하기 위하여 현존하는 수치식의 수정 및 도입이 필요하다.