• Title/Summary/Keyword: fiber laser

Search Result 869, Processing Time 0.028 seconds

STABILIZATION OF REFERENCE SIGNAL TRANSMISSION SYSTEM IN RADIO TELESCOPE FOR VLBI (VLBI 전파망원경 기준 신호 전송시스템 안정화)

  • Je, Do-Heung;Lee, Won-Kyu;Kim, Soo-Yeon;Chung, Moon-Hee;Song, Min-Kyu;Jung, Taehyun;Byun, Do-Young;Kim, Seung-Rae;Sohn, Bong-Won;Wi, Seog-Oh;Han, Seog-Tae;Kang, Yong-Woo
    • Publications of The Korean Astronomical Society
    • /
    • v.28 no.3
    • /
    • pp.95-100
    • /
    • 2013
  • A fiber-optic reference signal transmission system, which transmits the 1.4 GHz reference signal from H-maser to receiver cabin in radio telescopes, was adopted for compensating the phase changes due to temperature variation and antenna movement. At the first experiment, the remote signal's phase changed more than 15 degrees at 1.4 GHz. We found unstable components in sub-system experiments and replaced them. The main cause of unstable phase stability was the unaligned polarization axis between Laser Diode and Mach-Zehnder Modulator (MZM). The improved system stability showed $1{\times}10^{-16}$ allan standard deviation at 1,000 sec integration time with the antenna fixed. When the antenna moves in the azimuth axis, the 1.4 GHz remote signal showed the phase change smaller than 0.2 degrees.

Study on PAN-based carbon fibers containing cellulose treated with flame retardant (난연 처리한 셀룰로오스가 첨가된 PAN계 탄소섬유의 특성 연구)

  • Yang, Jee-Woo;Yu, Jae-Jeong;Yong, Da-Kyung;Chung, Yong-Sik;Lee, Seung-Goo
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.75-75
    • /
    • 2012
  • 탄소섬유는 전구체의 종류에 따라 PAN계, 피치계 그리고 레이온계로 나뉘며 최종 탄소섬유의 특성에도 차이가 있는 것으로 알려져 있다. 최근에는 PAN계 탄소섬유가 세계 시장의 대부분을 차지하고 있으며, PAN계 탄소섬유의 초경량, 고강도, 고탄성, 내약품성 그리고 열안정성 등의 우수한 특성으로 최첨단 고기능성 제품의 복합재로 많이 이용되고 있다. 그러나 탄소섬유가 가지고 있는 높은 열전도성은 적용에 따라 단점으로 작용될 수도 있다. 예를 들면, 로켓 엔진의 노즐이나 원자로의 구조물 그리고 극한조건용 구조재료 등, 고강도 단열특성을 요하는 최첨단 복합재로 응용 범위를 넓히는데 한계로 작용한다. 레이온은 최초의 탄소섬유 전구체였으나 공정상 경제성이 떨어지는 이유로, 지금은 고탄성을 요구하는 특수 목적으로만 소량 생산되고 있다. 레이온의 주원료는 셀룰로오스이며 셀룰로오스는 지구상에서 가장 흔한 재료이므로 오늘날 셀룰로오스를 보강재로 이용하려는 연구가 활발히 진행되고 있다. 본 연구에서는 탄소섬유의 열전도도를 낮추기 위한 방법으로 안정화셀룰로오스를 첨가한 PAN용액을 출발물질로 탄소섬유를 제조하고 특성 연구를 진행하였다. PAN용액에 셀룰로오스의 분산성을 향상시키기 위해 셀룰로오스를 열처리하였다. 이 과정에서 얻어진 안정화 셀룰로오스의 수율을 높이기 위해 셀룰로오스를 난연 처리하였으며, 그 결과 안정화셀룰로오스의 수율을 향상시킬 수 있었다. 안정화셀룰로오스를 첨가시킨 PAN계 탄소섬유의 물리적, 기계적 그리고 열적 특성을 SEM, XRD, 만능 인장시험기, TGA 그리고 Laser Flash Method 등을 통해 주요 특성 및 변화를 관찰한 결과, 순수한 PAN계 탄소섬유의 특성과 유사한 결과를 얻었다. 향후 몇 가지 공정상의 문제점을 개선한다면 흥미로운 결과를 기대할 수 있을 것으로 본다.

  • PDF

Development of RSOD using optical phase modulator (광위상 변조기를 이용한 RSOD 개발)

  • Hwang, Dae-Seok;Lee, Young-Woo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.14-18
    • /
    • 2006
  • Optical interferometer is used for various optical measurement fields in optical metrology and biomedical measurements. In an optical interferometer, optical delay line has to change the optical path length of a reference arm to match with that of a sample in and it's speed was limited by reference arm movement speed. In this paper, we proposed an all-fibered RSODRapid Scanning-speed Optical Delay) without any mechanical movement, and we applied this system to optical interferometer. Experimental setup is consist of pulse laser source (center wavelength 1304nm, pulse width 30ps, repetition rate 10GHz), two phase modulators and dispersive shifted fiber. As experimental results, we obtain the maximum time delay of 11ps at 10MHz repetition rate, and it is easily tuneable the time delay by modulation frequency and modulation voltage.

Analysis of Intermodulation Distortion for Wavelength-Dependence Transmission Experiment of a Feedforward Analog Optical Transmitter with External Light Injection Method in WDM/SCM RoF Systems (WDM/SCM RoF 시스템에서 광 주입 기술을 적용한 피드포워드 아날로그 광송신기의 파장차이에 따른 상호변조 왜곡성분의 특성 분석)

  • Moon, Yon-Tae;Choi, Young-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.33-39
    • /
    • 2008
  • We have experimentally demonstrated the transmission performance of a feedforward optical transmitter using an external light injection technique. The feedforward compensation method shows 31 dB intermodulation distortion suppression and 2.2 dB noise reduction. A high side-mode suppression ratio exceeding 35 dB of the wavelength of the locked Fabry-Perot laser diode was obtained over 12 nm ranges. The suppression characteristics of the intermodulation distortion for various wavelength differences and transmission lengths were measured and analyzed as the evaluation criteria for the system performance in WDM/SCM based radio-over-fiber systems.

Comparison of Physical Properties of Hanjis Made by Different Sheet Forming Processes (초지법에 따른 한지의 물성비교)

  • 최태호;조남석;최인호;정택상
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.4
    • /
    • pp.21-27
    • /
    • 2001
  • Korean traditional paper (Hanji) making technology has adopted two kinds of sheet forming processes, which called "Oebal-choji": and "Ssangbal-choji". The sheet forming process of Oebal-choji is an original method developed in Korea. At first, paper stock is dipped onto the mold and flow away in the forward direction. Then, paper stock is scooped again and rhythmically rocked from side to side, this work is repeated several times. Through this operation the fibers intertwine and paper layers are formed. Ssangbal-choji is almost same as the Nagashizuki, which used in Japan. In this method, paper stock is scooped onto the mold and rhythmically rocked backwards and forwards several times, the water drains slowly through the bamboo screen and then sheet is formed. Tamezuki method is used in Japan and China. This is a method in which the mold is dipped into the paper stock once and left to drain. In the Ssangbal-choji and Nagashizuki methods, the most of excess solution is cast out while in the Tamezuki all of it is allowed to drain through the mold. This study was carried out to investigate the physical properties of the Hanjis that were made by Oebal-choji, Ssangbal-choji, Nagashizuki, and Tamezuki sheet forming processes. The results were follows; Physical properties of the Oebal-choji Hanji were better than those of Ssangbal-choji, Nagashizuki, and Tamezuki. Oebal-choji Hanji made little difference of paper strength between MD and CD, but Ssangbal-chjo and Nagashizuki Hanjis made wide difference. And there are no difference of paper strength between MD and CD on the Tamezuki Hanji. On the confocal laser scanning microscopy (CLSM) observation of the Hanjis, Oebal-choji made well crossed fiber orientation than those of other forming processes.r forming processes.

  • PDF

Design and Demonstration of All-Optical XOR, AND, OR Gate in Single Format by Using Semiconductor Optical Amplifiers (반도체 광증폭기를 이용한 다기능 전광 논리 소자의 설계 및 측정)

  • Son, Chang-Wan;Yoon, Tae-Hoon;Kim, Sang-Hun;Jhon, Young-Min;Byun, Yung-Tae;Lee, Seok;Woo, Deok-Ha;Kim, Sun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.564-568
    • /
    • 2006
  • Using the cross-gain modulation (XGM) characteristics of semiconductor optical amplifiers (SOAs), multi-functional all-optical logic gates, including XOR, AND, and OR gates are successfully simulated and demonstrated at 10Gbit/s. A VPI component maker^TM simulation tool is used for the simulation of multi-functional all-optical logic gates and the10 Cbit/s input signal is made by a mode-locked fiber ring laser. A multi-quantum well (MQW) SOA is used for the simulation and demonstration of the all-optical logic system. Our suggested system is composed of three MQW SOAs, SOA-1 and SOA-2 for XOR logic operation and SOA-2 and SOA-3 for AND logic operation. By the addition of two output signals XOR and AND, all-optical OR logic can be obtained.

Investigating the Morphology and Kinetics of Three-Dimensional Neuronal Networks on Electro-Spun Microstructured Scaffolds

  • Kim, Dongyoon;Kim, Seong-Min;Kang, Donghee;Baek, Goeun;Yoon, Myung-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.2-277.2
    • /
    • 2013
  • Petri dishes and glass slides have been widely used as general substrates for in vitro mammalian cell cultures due to their culture viability, optical transparency, experimental convenience, and relatively low cost. Despite the aforementioned benefit, however, the flat two-dimensional substrates exhibit limited capability in terms of realistically mimicking cellular polarization, intercellular interaction, and differentiation in the non-physiological culture environment. Here, we report a protocol of culturing embryonic rat hippocampal neurons on the electro-spun polymeric network and the results from examination of neuronal cell behavior and network formation on this culture platform. A combinatorial method of laser-scanning confocal fluorescence microscopy and live-cell imaging technique was employed to track axonal outgrowth and synaptic connectivity of the neuronal cells deposited on this model culture environment. The present microfiber-based scaffold supports the prolonged viability of three-dimensionally-formed neuronal networks and their microscopic geometric parameters (i.e., microfiber diameter) strongly influence the axonal outgrowth and synaptic connection pattern. These results implies that electro-spun fiber scaffolds with fine control over surface chemistry and nano/microscopic geometry may be used as an economic and general platform for three-dimensional mammalian culture systems, particularly, neuronal lineage and other network forming cell lines.

  • PDF

Measurement of Bangudae Rock Joint Using Non-adhesive, Non-contact Inclinometer Slope Laser Measuring System (비부착, 비접촉 방식의 계측기를 이용한 반구대암각화 암반 절리면의 계측)

  • Kim, Jae Hyun;Lee, Sang Ok;Chung, Kwang Yong;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.617-625
    • /
    • 2021
  • Daegokcheon Stream in Daegok-ri, Ulju-gun, is an area with a developed valley and bedrock from Gajisan Provincial Park to the confluence of the Taehwa River across the Yangsan Fault. To measure the rock of Bangudae petroglyphs, the mineralogical weathering, joints, and scours or cavities at the bottom were confirmed. The measurement was carried out for a short period of time on the joint of the bedrock on which the Bangudae petroglyphs were engraved. Compared to the measured value obtained using existing optical fiber (Ch4 150 ㎛), a displacement value of 300 ㎛ was obtained using the non-attached, non-contact type of measuring instrument. In the future, it is inferred that this instrument could be used for various cultural properties if the HSV-value suitable for illuminance and various measurement experiences are stored.

Manufacturing and Characteristic Evaluation of Free space Optical Communication Devices in 5G Mobile Base Stations for Emergency Disaster Response (긴급재난 대응용 5G 이동 기지국을 위한 대기공간 광통신 장치의 제작과 특성평가)

  • Jin-Hyeon Chang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.131-138
    • /
    • 2023
  • In this paper, a free space optical communication device that can be used in a mobile base station of several km or less was fabricated and its characteristics were investigated. To overcome the loss due to atmospheric transmission, an optical fiber amplifier (EDFA) with an output of 23 dBm or more was used. In order to increase the focusing speed and miniaturization of the laser beam, an optical lens was manufactured, and a transmission lens was designed to have beam divergence within the range of 1.5 to 1.8 [mrad]. A PT module that controls PAN/TILT was fabricated in order to reduce pointing errors and effective automatic alignment between transceiver devices. In this study, Reed-Solomon (RS) code was used to maintain the transmission quality above a certain level. It was manufactured to be able to communicate at a wireless distance of 300m in a weather situation with visibility of 300m. For performance measurement, it was measured using BERT and eye pattern analyzer, and it was confirmed that BER can be maintained at 2.5Gbps.

Implant Isolation Characteristics for 1.25 Gbps Monolithic Integrated Bi-Directional Optoelectronic SoC (1.25 Gbps 단일집적 양방향 광전 SoC를 위한 임플란트 절연 특성 분석)

  • Kim, Sung-Il;Kang, Kwang-Yong;Lee, Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.52-59
    • /
    • 2007
  • In this paper, we analyzed and measured implant isolation characteristics for a 1.25 Gbps monolithic integrated hi-directional (M-BiDi) optoelectronic system-on-a-chip, which is a key component to constitute gigabit passive optical networks (PONs) for a fiber-to-the-home (FTTH). Also, we derived an equivalent circuit of the implant structure under various DC bias conditions. The 1.25 Gbps M-BiDi transmit-receive SoC consists of a laser diode with a monitor photodiode as a transmitter and a digital photodiode as a digital data receiver on the same InP wafer According to IEEE 802.3ah and ITU-T G.983.3 standards, a receiver sensitivity of the digital receiver has to satisfy under -24 dBm @ BER=10-12. Therefore, the electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysed and measured results of the implant structure, the M-BiDi SoC with the implant area of 20 mm width and more than 200 mm distance between the laser diode and monitor photodiode, and between the monitor photodiode and digital photodiode, satisfies the electrical crosstalk level. These implant characteristics can be used for the design and fabrication of an optoelectronic SoC design, and expended to a mixed-mode SoC field.