Abstract
A fiber-optic reference signal transmission system, which transmits the 1.4 GHz reference signal from H-maser to receiver cabin in radio telescopes, was adopted for compensating the phase changes due to temperature variation and antenna movement. At the first experiment, the remote signal's phase changed more than 15 degrees at 1.4 GHz. We found unstable components in sub-system experiments and replaced them. The main cause of unstable phase stability was the unaligned polarization axis between Laser Diode and Mach-Zehnder Modulator (MZM). The improved system stability showed $1{\times}10^{-16}$ allan standard deviation at 1,000 sec integration time with the antenna fixed. When the antenna moves in the azimuth axis, the 1.4 GHz remote signal showed the phase change smaller than 0.2 degrees.