• Title/Summary/Keyword: fiber fraction

Search Result 637, Processing Time 0.024 seconds

Antioxidative Activity and Related Compounds of Apple Pomace (사과박의 항산화 활성 및 항산화 성분)

  • Lee, Jae-Ho;Kim, Young-Chan;Kim, Mi-Yeon;Chung, Hun-Sik;Chung, Shin-Kyo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.908-913
    • /
    • 2000
  • To enhance the utilization of apple pomace for the functional food resources, we analyzed the useful components and examined the antioxidant activity of apple pomace. The contents of total dietary fiber, total flavonoid, total phenolic acid and vitamine C were 55.56%, 458 mg%, 1048 mg% and 19.8 mg%, respectively. Protocatechuic acid, cinamic acid, caffeic acid, ferulic acid, syringic acid, vanillic acid and phydroxybenzoic acid were identified in the apple pomace extract by GC-MS. Phloridzin and quercetin-3-glucoside were identified in the apple pomace extract by HPLC. Ethyl acetate fraction showed the highest antioxidative ability by ferric thiocyanate method. Malondialdehyde(MDA) formation in normal rat liver tissue also showed the lowest in ethyl acetate fraction.

  • PDF

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

Dynamic characterization of a CNT reinforced hybrid uniform and non-uniform composite plates

  • Lakshmipathi, Jakkamputi;Vasudevan, Rajamohan
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.31-46
    • /
    • 2019
  • In the present study, the various dynamic properties of MWCNT embedded fiber reinforced polymer uniform and tapered composite (MWCNT-FRP) plates are investigated. Various configurations of a tapered composite plate with ply-drop off and uniform composite plate have been considered for the development of the finite element formulation and experimental investigations. First order shear deformation theory (FSDT) has been used to derive the kinetic and potential energy equations of the hybrid composite plates by including the effect of rotary inertia, shear deformation and non-uniformity in thickness of the plate. The governing equations of motion of FRP composite plates without and with MWCNT reinforcement are derived by considering a nine- node rectangular element with five degrees of freedom (DOF) at each node. The effectiveness of the developed finite element formulation has been demonstrated by comparing the natural frequencies and damping ratio of FRP composite plates without and with MWCNT reinforcement obtained experimentally. Various parametric studies are also performed to study the effect of CNT volume fraction and CNT aspect ratio of the composite plate on the natural frequencies of different configurations of CNT reinforced hybrid composite plates. Further the forced vibration analysis is performed to compare the dynamic response of the various configurations of MWCNT-GFRP composite plate with GFRP composite plate under harmonic excitations. It was observed that the fundamental natural frequency and damping ratio of the GFRP composite plate increase approximately 8% and 37% respectively with 0.5wt% reinforcement of MWCNT under CFCF boundary condition. The natural frequencies of MWCNT-GFRP hybrid composite plates tend to decrease with the increase of MWCNT volume fraction beyond 2% due to agglomeration of CNT's. It is also observed that the aspect ratio of the CNT has negligible effect on the improvement of dynamics properties due to randomly orientation of CNT's.

Study on Direct Tensile Properties and Reliability Review of Steel Fiber Reinforced UHPC (강섬유 보강 UHPC의 직접인장 특성 및 신뢰성 검토에 관한 연구)

  • Park, Ji Woong;Lee, Gun Cheol;Koh, Kyung Taek;Ryu, Gum Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.125-132
    • /
    • 2018
  • In this study, a direct tensile test was planned to identify the tensile performance of UHPC, and the irregularity of cracks, which is a problem of the direct tensile test, was complemented through the introduction of notches at the center of a specimen. In this regard, a number of specimens divided by batch to reduce the deviation of direct tensile test values were fabricated to present reference data with respect to highly reliable direct tensile strength values. In addition, the mechanical properties and reliability of the specimens were examined under the curing conditions of the specified design strength of 120MPa for the steel fiber reinforced concrete with 1.5% fiber volume fraction, which is most suitable for the field application. As a result, the deviation of averages by batch between compressive strength and direct tensile strength did not show a large difference, and all cracks occurred within 20mm in the direct tensile test. At the 95% confidence interval of the direct tensile strength, the range was considerably small in the mean and the standard deviation, and there was no significant difference depending on the curing conditions. The results confirmed that a stable direct tensile test was performed, and highly reliable results were obtained through the fabrication of specimens by batch and test progress.

The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener (경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • Demand of glass fiber reinforced composites (GFRC) increased with developing aircraft and defense industries using resin transfer molding (RTM) process to produce complex product. In this research, wetting, interfacial, and mechanical properties were evaluated with different Cross-linking Density by Molecular Weight of Hardener. Epoxy resin as matrices was used bisphenol-A type and amine-type hardeners with different molecular weight. Specimens were manufactured via RTM and wetting property of resin and glass fiber (GF) mat was evaluated to viscosity of epoxy and injection time of epoxy matrix. Mechanical property of GFRC was determined via flexural strength whereas interfacial properties were determined by interlaminar shear strength (ILSS) and interfacial shear strength (IFSS). The difference in mechanical property depends upon the fiber weight fraction (wt %) of GFRC by RTM as well as the different Molecular Weight of Hardener.

Physicochemical Characteristics of Ethanol Extracts from Each Part of the Pleurotus eryngii (새송이버섯(Pleurotus eryngii) 부위별 추출물의 이화학적 특성)

  • Ahn, Myung-Soo;Kim, Hyun-Jeung;Seo, Mi-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.21 no.3
    • /
    • pp.297-302
    • /
    • 2006
  • This study has examined the physicochemical properties of the Pleurotus eryngii, including their proximate components, amount mineral content, total dietary fiber, total sugar, reducing sugar and free sugar. Additionally, it measured the P. egii ethanol extracts and the total amounts of polyphenol compounds as well as its electron donating ability (EDA) of the substance fraction (SF). The P. eryngii powder's moisture content was 9.0% and each of the other element content such as carbohydrate, crude protein, crude ash and crude fat was found to be 63.06%, 20.70%, 5.20% and 2.0% respectively. Potassium (K) was shown to be the greatest inorganic content and manganese (Mn) was the lowest. Furthermore fructose, galactose, glucose lactose and maltose free sugar content was found in this order. 387 mg% of the total amounts of polyphenol was found in the P. eryngii whole body ethanol extract, 158 mg% in the stipe extract, 593 mg% in the pileus extract and 607 mg% in the substance fraction (SF). Electron donating ability (EDA) was highest at 91.12% in the whole body extract and lowest at 62.90% in the stipe extract. Additionally, the EDA for substance fraction (SF) 0.02%-0.1% was found to be 57.78-77.33%, which was lower than the 0.02%-tocopherol (93.92%) and BHT (96.72%). From these results, it can be assumed that P. eryngii offers superior antioxidative effects with its high content of fiber, inorganic materials and total amounts of polyphenol as well as high electron donating ability (EDA), thereby making it ideal for use in functional foods and industrial materials.

An Experimental Study on the Bending Behavior of F.R.P. Sandwich Structure with 2nd Reinforced Bonding (2차 접착된 Sandwich 구조의 굽힘에 관한 실험연구)

  • Kim, Ik Tai
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.47-51
    • /
    • 2016
  • It has made a special study of bending behavior of F.R.P. sandwich beams with bonded 2nd-reinforced plies. Specimen's faces were made of chopped mat 300-450, roving clothes 570, core is urethane foam, resin is 713bp unsaturated polyester for ship construction and the mixture weight ratio of resin versus fiber was 55:45 for bending analysis. The purpose of this paper is to study the exact bending behavior of bonded area's deflection and stiffness depends upon various bonded F.R.P. (2nd reinforced ply) length and thickness on which covered joints and to find the optimum design for the sandwich structures. All results and suggestions are based on experiment and using thick face calculation.

Flexural Experiments on Reinforced Concrete Beams Strengthened with ECC and High Strength Rebar (ECC와 고장력 철근으로 보강된 철근콘크리트 보의 휨 실험)

  • Cho, Hyun-Woo;Bang, Jin-Wook;Han, Byung-Chan;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.503-509
    • /
    • 2011
  • ECC is a micro-mechanically designed cementitious composite which exhibits tightly controlled crack width and strain hardening behavior in uniaxial tension while using a moderate amount of reinforcing fiber, typically less than 2% fiber volume fraction. Recently, a variety of applications of this material ranging from repair and retrofit of structures, cast-in-place structures, to precast structural elements requiring high ductility are developed. In the present study, a retrofitting method using ECC reinforced with high strength rebar was proposed to enhance load-carrying capacity and crack control performance of deteriorated reinforced concrete (RC) beams. Six beam specimens were designed and tested under a four-point loading setup. The flexural test revealed that load-carrying capacity and crack control performance were significantly enhanced by the use of ECC and high strength rebar. This result will be useful for practical field applications of the proposed retrofitting method.

A Study on the Microscopic Damage Behavior and the Damage Position Evaluation of TiNi/Al6061 Share Memory Alloy Composite (TiNi/A16061 형상기억복합재료의 미시적 손상거동과 손상위치측정에 관한 연구)

  • Lee, Jin-Gyeong;Park, Yeong-Cheol;Gu, Hu-Taek;Lee, Gyu-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1787-1794
    • /
    • 2002
  • TiNi alloy fiber was used to solve the problem of the tensile residual stress as the reinforced material. TiNi alloy fiber improves the tensile strength of composite by occurring compressive residual stress in the matrix using shape memory effect. In order to generate compressive residual stress in TiNi/Al6061 shape memory alloy(SMA) composite, 1, 3 and 5% pre-strains were applied to the composite in advance. It was also evaluated the effect of compressive residual stress corresponding to the pre-strain variation and the volume fraction of TiNi alloy. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain in TiNi/Al6061 SMA composite. The results of the microscopic damage evaluation of TiNi/Al6061 SMA composite under various pre-strain using AE technique can be divided into three stage corresponding to the AE signals. AE counts and events were useful parameters to evaluate the fracture mechanism according to the variation of pre-strain. In addition, two dimensional AE source location technique was applied for monitoring the crack initiation and propagation in composite.

Volume Integral Equation Method for Multiple Isotropic Inclusion Problems in an Infinite Solid Under Uniaxial Tension (인장 하중을 받는 무한 고체에 포함된 다수의 등방성 함유체 문제 해석을 위한 체적 적분방정식법)

  • Lee, Jung-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.881-889
    • /
    • 2010
  • A volume integral equation method (VIEM) is introduced for solving the elastostatic problems related to an unbounded isotropic elastic solid; this solid is subjected to remote uniaxial tension, and it contains multiple interacting isotropic inclusions. The method is applied to two-dimensional problems involving long parallel cylindrical inclusions. A detailed analysis of the stress field at the interface between the matrix and the central inclusion is carried out; square and hexagonal packing of the inclusions are considered. The effects of the number of isotropic inclusions and different fiber volume fractions on the stress field at the interface between the matrix and the central inclusion are also investigated in detail. The accuracy and efficiency of the method are clarified by comparing the results obtained by analytical and finite element methods. The VIEM is shown to be very accurate and effective for investigating the local stresses in composites containing isotropic fibers.