• Title/Summary/Keyword: fiber cross section

Search Result 239, Processing Time 0.024 seconds

Finite element development of a Beam-column connection with CFRP sheets subjected to monotonic and cyclic loading

  • Rahimipour, Arash;Hejazi, Farzad;Vaghei, Ramin;Jaafar, Mohd Saleh
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1083-1096
    • /
    • 2016
  • Beam-column joints are recognized as the weak points of reinforcement concrete frames. The ductility of reinforced concrete (RC) frames during severe earthquakes can be measured through the dissipation of large energy in beam-column joint. Retrofitting and rehabilitating structures through proper methods, such as carbon fiber reinforced polymer (CFRP), are required to prevent casualties that result from the collapse of earthquake-damaged structures. The main challenge of this issue is identifying the effect of CFRP on the occurrence of failure in the joint of a cross section with normal ductility. The present study evaluates the retrofitting method for a normal ductile beam-column joint using CFRP under monotonic and cyclic loads. Thus, the finite element model of a cross section with normal ductility and made of RC is developed, and CFRP is used to retrofit the joints. This study considers three beam-column joints: one with partial CFRP wrapping, one with full CFRP wrapping, and one with normal ductility. The two cases with partial and full CFRP wrapping in the beam-column joints are used to determine the effect of retrofitting with CFRP wrapping sheets on the behavior of the beam-column joint confined by such sheets. All the models are subjected to monotonic and cyclic loading. The final capacity and hysteretic results of the dynamic analysis are investigated. A comparison of the dissipation energy graphs of the three connections shows significant enhancement in the models with partial and full CFRP wrapping. An analysis of the load-displacement curves indicates that the stiffness of the specimens is enhanced by CFRP sheets. However, the models with both partial and full CFRP wrapping exhibited no considerable improvement in terms of energy dissipation and stiffness.

Design of PFRP I and Box Shape Compression Members Considering Stress Distribution in the Cross-section (단면 내 응력분포를 고려한 I형 및 Box형 단면의 PFRP 압축재의 설계)

  • Choi, Jin-Woo;Kim, Jae-Wook;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • Pultruded fiber reinforced polymeric plastic (PFRP) structural members may be one of attractive alternatives of the structural members in the civil engineering applications because of its many advantageous mechanical properties. However, they have relatively low modulus of elasticity and also cross-sections of structural shapes are composed of thin plate components such as flange and web. Therefore, structural stability is an important issue in the design of pultruded structural compression members. For the design of pultruded structural member under compression, buckling and post-buckling strengths of plate components may be taken into account. In the structural steel design following AISC/LRFD, in addition to the buckling strength, the nonuniform stress distribution in the section is incorporated with a form factor. In this paper, the form factor for the design of PFRP structural member under compression is investigated through the analytical study. Furthermore, the process for the determination of the form factor is suggested.

Evaluation of flexural performance of high performance fiber reinforced cementitious composites according to fiber shape, aspect ratio and volume fraction (강섬유의 형상, 길이 및 혼입율에 따른 고성능 섬유보강 시멘트 복합체의 휨 특성 평가)

  • Park, Gi-Joon;Park, Jung-Jun;Kim, Sung-Wook;Lee, Jang-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.697-704
    • /
    • 2017
  • High-Performance Fiber-Reinforced Cement Composites (HPFRCC) has outstanding durability, and has attracted interest because of its ductility and development of strength, which allows a reduction of the self-weight of a structural member by substantially decreasing the cross section. Therefore, the present study aimed to improve the economic efficiency of HPFRCC by examining experimentally the flexural performance considering various characteristics of the steel fiber. To find an efficient fiber reinforcement method, the flexural performance was evaluated for different shapes, aspect ratios, and volume ratios of the steel fiber. Straight, hooked, and twisted fiber configurations were considered by adopting a fiber length longer than the usual 13 mm. The test results showed that HPFRCC reinforced by 19.5 nun-long straight fibers with a volume fraction of 1.5% shows better flexural performance than that reinforced by 13 mm-long straight fibers with a volume fraction of 2.0%. Consequently, HPFRCC with enhanced economic efficiency can be produced by adopting a reduced amount of steel fiber.

Comparative Experimental Analysis of Thermal Characteristics of Ytterbium-Doped Phosphosilicate and Aluminosilicate Fibers

  • Lee, Seungjong;Vazquez-Zuniga, Luis A.;Lee, Dongyoung;Kim, Hyuntai;Sahu, Jayanta K.;Jeong, Yoonchan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.182-187
    • /
    • 2013
  • We present a comparative experimental analysis of the thermal spectroscopic characteristics of a phosphosilicate (P)-based ytterbium-doped fiber (YDF) against an aluminosilicate (Al)-based YDF in the temperature range of 25 to $150^{\circ}C$. We also characterize the fibers as gain media in a cladding-pumped amplifier configuration. While both fibers exhibit comparable trends in their thermal characteristics, there are noticeable distinctions in the fluorescence lifetime reduction rate and the spectral dependence of the transition cross-sections. The P- and Al-based YDFs present thermal lifetime reduction rates of $0.012%/^{\circ}C$ and $0.026%/^{\circ}C$, respectively. In particular, in the spectral region at ~940 nm, the absorption cross-section of the P-based YDF undergoes significantly less thermal change compared to that of the Al-YDF. In the cladding-pumped amplifier configuration operating at a total gain of 10 dB, the Al-based YDF generally performs betters than the P-based YDF in the temperature range of 25 to $75^{\circ}C$. However, it is highlighted that in the high temperature range of over $75^{\circ}C$, the latter shows a less gain reduction rate than the former, thereby yielding higher relative output power by 3.3% for a 1060-nm signal, for example.

Processing and Mechanical Properties of Mullite Fiber / Fe Composite

  • Niibo, Yoshihide;Yuchi, Kazuhiro;Sameshima, Soichiro;Hirata, Yoshihiro
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 2000.06a
    • /
    • pp.195-214
    • /
    • 2000
  • The high-speed steel (shorten as HSS) consists of Fe and several kinds of transition metal carbides. The cutting tools or wear-resistant materials made from HSS experience relatively high thermal shock because a coolant such as water or oil is flowed over the surface of heated HSS. The purpose of this research is to increase the hardness, strength, fracture toughness and thermal shock resistance of HSS. A possible strategy is to incorporate a hard ceramic material with high strength in HSS matrix. This paper describes the processing, microstructure and mechanical properties of the oriented unidirectional mullite fiber/HSS composite. The unidirectional mullite fibers of 10${\mu}{\textrm}{m}$ diameter were dispersed by the ultrasonic irradiation of 38 kHz in an ethylenglycol suspension containing HSS powder of 11${\mu}{\textrm}{m}$ median size. The dried green composites with 4-68 vol% fibers were hot-pressed for 2h at 100$0^{\circ}C$ in Ar atmosphere under a pressure of 39 MPa. The higher density was achieved in the composite with a lower content of fibers. The oriented unidirectional fibers were well dispersed in the HSS matrix. The average distance between the center of fibers in the cross section was close to the value calculated from the fiber fraction. No reaction occurred at the interfaces between HSS and mullite fibers in the composites. The composite with 13.6 vol% fibers showed 100 MPa of four point flexural strength at room temperature. The thermal expansion of composite with heating was influenced by the orientation of mullite fibers.

  • PDF

Effect of Boron Nitride on Mechanical Properties, Thermal and Electrical Conductivities of Carbon Fiber Reinforced Plastics (탄소섬유강화 복합소재의 열적, 전기적, 기계적 특성에 대한 질화붕소 첨가제의 효과)

  • Hong, Hyunkee;Bae, Kwak Jin;Yu, Jaesang
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.153-160
    • /
    • 2020
  • In this paper, hexagonal boron nitride (h-BN) particles were added between the sheets of prepreg, and the effect of on many properties of BN-embedded carbon fiber reinforced plastics was investigated. The amount of BN particles which corresponds with 0 to 15 wt% of total resin weight was used as an additive material. The tensile strength and the inter-laminar shear strength of BN-embedded CFRP samples were improved by maximally 13.6%, and 6.7%, respectively. The tendency changes of thermal, electrical conductivities and the morphology of cross-section of CFRPs were also observed. This study suggests the possibility of controlling the characteristics of carbon fiber-BN-epoxy composites to use for aerospace applications.

Wideband Optical Phase Conjugator using HNL-DSF in WDM Systems with Path-Averaged Intensity Approximation Mid-Span Spectral Inversion (경로 평균 강도 근사 기법의 MSSI를 채택한 WDM 시스템에서 HNL-DSF를 갖는 광대역 광 위상 공액기)

  • Lee, Seong-Real;Lee, Yun-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.14-21
    • /
    • 2003
  • We investigated the optimum pump light power compensating distorted WDM signal due to both chromatic dispersion and self phase modulation (SPM). The considered system is $3{\times}40$ Gbps intensity modulation direct detection (IM/DD) WDM transmission system with path-averaged intensity approximation (PAIA) mid-span spectral inversion (MSSI) as compensation method. This system have highly nonlinear dispersion shifted fiber (HNL-DSF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that HNL-DSF is an useful nonlinear medium in OPC for wideband WDM transmission, and the excellent compensation is obtained when the pump light power of HNL-DSF OPC was selected to equalize the conjugated light power into the second half fiber section with the input WDM signal light power depending on total transmission length. By this approach, it is verified the possibility to realize a long-haul high capacities WDM system by using PAIA MSSI compensation method, which have HNL-DSF OPC with optimal pump light power depending on transmission length.

  • PDF

A numerical study on feasibility of the circled fiber reinforced polymer (FRP) panel for a tunnel lining structure (터널 라이닝 구조체로서 곡면 섬유강화 복합재료의 적용성 검토를 위한 수치해석적 연구)

  • Lee, Gyu-Phil;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.6
    • /
    • pp.451-461
    • /
    • 2010
  • Utilization of the fiber reinforced polymer (FRP) material has been enlarged as a substitution material to the general construction materials having certain long-term problems such as corrosion, etc. However, it could be difficult to apply the FRP material, which has a linear shape generally, to an arch-shaped tunnel structure. Therefore, an attempt has been made in this study to develop a device to form a designed cross section of FRP material by pulling out with a curvature. A sample of the circled FRP product was successfully produced and then the sample has been tested to identify its physical characteristics. Then, intensive feasibility studies on the circled FRP panel to be used for a tunnel lining structure have been carried out by numerical analyses. As a result, it appears that the new circled FRP-concrete composite panel has a high capability to be used for a tunnel lining material without any structural problem.

Experimental and numerical studies on the cyclic behavior of R/C hollow bridge piers with corroded rebars

  • Cardone, D.;Perrone, G.;Sofia, S.
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.41-62
    • /
    • 2013
  • A comprehensive experimental program of cyclic tests on 1:3-scale models of bridge piers is going to be carried out at the Laboratory of Structures and Materials of the University of Basilicata. The testing models include eight RC single shaft piers with hollow circular cross section. Four piers have been realised using corroded steel rebars. In this paper, the results of preliminary numerical simulation analyses of the cyclic behaviour of the piers, carried out with Opensees using fiber-based models, are presented. Pull-out and lap-splice effects of steel rebars have been taken into account in the numerical analyses. First, the experimental specimens and the test set up are presented. Next, the results of the numerical analyses are discussed. In the numerical analyses, different configurations and levels of corrosion have been considered. The effective stiffness and equivalent damping of the piers is reported as a function of pier ductility and pier drift.

A Study on Dyeability of Polyester Fabrics Grafted with Methacrylic Acid (MA 그라프트 폴리에스테르직물의 염색성에 관한 연구)

  • Baik, Chun-Eui;Cho, Seung-Sik;Song, Hwa-Sun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.19 no.6
    • /
    • pp.946-954
    • /
    • 1995
  • The purpose of this study is to modify the hydrophobic property and dyeability of polyethylene terephthalate fiber. Methacrylic acid (2nA) was graftpolymerized with benzoyl peroxide (BPO) as initiator onto polyethylene terephthalate fabrics. The results were as follow; 1. Graft-polymerization exhibited maximum graft ratio at a temperature of 100"C. 2. The polymer was gradually grafted in great amount to the surface of MA-g-PET as graft ration increase; with the cross-section examination of MA-g-PET, it was discovered that graft-polymeriation had also taken place inside the textile core. 3. Dyes absorption of basic dyes and disperse dyes was improved as craft ratio increase; with resistance to laundering, the former showed grade 3-4 and the latter showed grade 5.de 5.

  • PDF