Browse > Article
http://dx.doi.org/10.12989/eas.2013.4.1.041

Experimental and numerical studies on the cyclic behavior of R/C hollow bridge piers with corroded rebars  

Cardone, D. (Scuola di Ingegneria, Universita degli Studi della Basilicata)
Perrone, G. (Scuola di Ingegneria, Universita degli Studi della Basilicata)
Sofia, S. (Scuola di Ingegneria, Universita degli Studi della Basilicata)
Publication Information
Earthquakes and Structures / v.4, no.1, 2013 , pp. 41-62 More about this Journal
Abstract
A comprehensive experimental program of cyclic tests on 1:3-scale models of bridge piers is going to be carried out at the Laboratory of Structures and Materials of the University of Basilicata. The testing models include eight RC single shaft piers with hollow circular cross section. Four piers have been realised using corroded steel rebars. In this paper, the results of preliminary numerical simulation analyses of the cyclic behaviour of the piers, carried out with Opensees using fiber-based models, are presented. Pull-out and lap-splice effects of steel rebars have been taken into account in the numerical analyses. First, the experimental specimens and the test set up are presented. Next, the results of the numerical analyses are discussed. In the numerical analyses, different configurations and levels of corrosion have been considered. The effective stiffness and equivalent damping of the piers is reported as a function of pier ductility and pier drift.
Keywords
RC piers; nonlinear cyclic behavior; numerical simulation analyses; corrosion of steel rebars;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Auyeung, Y.B., Balaguru, P. and Chung, L. (2000), "Bond behavior of corroded reinforcement bars", ACI Mater. J., 97(2), 214-221.
2 Bertolini, L., Elsener, B., Pedeferri, P. and Polder, R.B. (2004), Corrosion of steel in concrete: prevention, diagnosis, repair, Wiley-VCH.
3 Calvi, M.G., Pavese, A., Rasulo, A. and Bolognini, D. (2005), "Experimental and numerical studies on the seismic response of R.C. hollow bridge piers", B. Earthq. Eng., 3(3), 267-297.   DOI
4 Cardone, D., Dolce, M., Pardi L., Perrone, G. and Sofia, S. (2010), "Pseudodynamic and cyclic tests on reduced-scale pier-deck sub-systems", Proc. of the IABMAS, Pennsylvania, USA.
5 CEB. (1993), CEB-FIP model code 1990 - Design Code, Comite Euro - International du Beton, Thomas Telford, London.
6 CEN, prEN1998-2. (2003), EC8: Design provisions for earthquake resistance of structures. Part 2:Bridges.
7 Cervenka, J. and Papanikolaou, V.K. (2008), "Three dimensional combined fracture-plastic material for concrete", Int. J. Plasticity, 24(12), 2192-220.   DOI   ScienceOn
8 Choe, D., Gardoni, P., Rosowsky, V.D. and Haukaas, T. (2009), "Seismic fragility estimates for reinforced concrete bridges subject to corrosion", Struct. Saf., 31(4), 275-283.   DOI   ScienceOn
9 Computer and Structures, inc. (2005), SAP2000 Advanced: Static and dynamic analysis finite element analysis of structures, University Ave. Berkeley, CA.
10 Delgado, P., Monteiro, A., Arêde, A., Vila Pouca, N., Delgado, R. and Costa, A. (2011), "Numerical simulations of RC hollow piers under horizontal cyclic loading", J. Earthq. Eng., 15(6), 833-849.   DOI   ScienceOn
11 Eligehausen, R., Popov, E.P. and Bertero, V.V. (1983), "Local bond stress-slip relationships of deformed bars under generalized excitations", Report to the National Science Foundation, College of Engineering, University of California at Berkeley, no. UCB/EERC - 83/23.
12 Faria, R., Oliver, J. and Cervera, M. (1998), "A strain based plastic viscous damage model for massive concrete structures", Int. J. Solids Struct., 35(14), 1533-1558.   DOI   ScienceOn
13 Ghosh, J. and Padgett, J.E. (2012), "Impact of multiple component deterioration and exposure conditions on seismic vulnerability of concrete bridges", Earthq. Struct., 3(5), 649-673.   DOI   ScienceOn
14 Jacobsen, L.S. (1930), "Steady forced vibrations as influenced by damping", Trans.-ASME, 51, 227.
15 Kang, H.D., Willam, K., Shing, B. and Spacone, E. (2000), "Failure analysis of R/C columns, using a triaxial concrete model", Comput. Struct., 77(5), 423-440.   DOI   ScienceOn
16 Kent, D.C. and Park, R. (1971), "Flexural members with confined concrete", Struct. Div.-ASCE, 1971, 97(7), 1969-1990.
17 Kim, I., Lim, H., Jhun, G. and Kim, J. (2000), "Cyclic loading test of small scale bridge pier models without seismic detailing", Proc. 12th WCEE, Auckland, New Zealand.
18 Kwon, M. and Spacone, E. (2000), "Three-dimensional finite element analyses of reinforced concrete columns", Comput. Struct., 80(2), 199-212.
19 Liu, J. and Foster, S.J. (2000), "A three-dimensional finite element model for confined concrete structures", Comput. Struct., 77(5), 441-451.   DOI   ScienceOn
20 Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Div.-ASCE, 114(8), 1804-1826.   DOI   ScienceOn
21 McKenna, F., Fenves, G.L. and Scott, M.H. (2000), "Open system for earthquake engineering simulation", http://opensees.berkeley.edu.
22 Menegotto, M. and Pinto, P.E. (1973), "Method of analysis of cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under normal force and bending", Preliminary Report, IABSE, 13, 15-22.
23 Neuenhofer, A. and Filippou, F.C. (1997), "Evaluation of nonlinear frame finite-element models", J. Struct. Eng., 123(7), 958-966.   DOI   ScienceOn
24 Neuenhofer, A. and Filippou, F.C. (1998), "Geometrically nonlinear flexibility-based frame finite element", J. Struct. Eng., 124(6), 704-711.   DOI   ScienceOn
25 Papanikolaou, V.K. and Kappos, A.J. (2009a), "Numerical study of confinement effectiveness in solid and hollow reinforced concrete bridge piers: Methodology", Comput. Struct., 87(21-22), 1427-1439.   DOI   ScienceOn
26 Papanikolaou, V.K. and Kappos, A.J. (2009b), "Numerical study of confinement effectiveness in solid and hollow reinforced concrete bridge piers: Analysis results and discussion", Comput. Struct., 87(21-22), 1440-1450.   DOI   ScienceOn
27 Pinto, A.V., Molina, J. and Tsionis, G. (2003), "Cyclic tests on large-scale models of existing bridge piers with rectangular hollow cross-section", Earthq. Eng. Struct. D., 32(13), 1995-2012.   DOI   ScienceOn
28 Priestley, M.J.N, Calvi, G.M. and Kowalski, M. (2007), Displacement based seismic design of structures, IUSS Press, Pavia.
29 Ranf, R.T. and Eberhard, M.O. (2004), "Development of 3-dimensional strain penetration analytical model in OpenSees", University of Washington, http://www.ce.washington.edu.
30 Ranzo, G. and Priestley, M.J.N. (2001), Seismic performance of circular hollow columns subjected to high shear, The University of California, Report No. SSRP 2001/01.
31 Rinaldi, Z., Valente, C. and Pardi, L. (2007), "A simplified methodology for the evaluation of the residual life of corroded elements", Struct. Infrastruct. Eng., 4(2), 139-152.
32 Sadrnejad, S.A. and Labibzadeh, M. (2006), "A continuum/discontinuum micro plane damage model for concrete", Int. J. Civil Eng., 4(4), 296-313.
33 Stewart, M.G. and Rosowsky, V.D. (1998), "Time-dependent reliability of deteriorating reinforced concrete bridge decks", Struct. Saf., 20(1), 91-109.   DOI   ScienceOn
34 Thoft-Christensen, P. (1998), "Assessment of the reliability pro-files for concrete bridges", Eng. Struct., 20(11), 1004-1009.   DOI   ScienceOn
35 Whittaker, D., Park., R. and Carr, A.J. (1987), "Experimental tests on hollow circular concrete columns for use in offshore concrete platforms", Proceedings, Pacific Conference on Earthquake Engineering, New Zealand, 1, 213-224.
36 Yeh, Y.K., Mo, Y.L. and Yang, C.Y. (2001), "Seismic performance of hollow circular bridge piers", ACI Struct. J., 98(6), 862-871.
37 Yeh, Y.K., Mo, Y.L. and Yang, C.Y. (2002), "Full-scale tests on rectangular hollow bridge piers", Mater. Struct., 34(246), 117-125.
38 Zahn, F.A., Park, R. and Priestley, M.J.N. (1990), "Flexural strength and ductility of circular hollow reinforced concrete columns without confinement on inside face", ACI Struct. J., 87(2), 156-166.