• 제목/요약/키워드: fiber content

검색결과 2,418건 처리시간 0.032초

근위축 발생전의 지구력 운동이 쥐의 위축뒷다리근의 질량, 근원섬유 단백질 함량 및 근섬유 단면적에 미치는 영향 (Effect of Endurance Exercise Prior to Occurrence of Muscle Atrophy on the Mass, Myofibrillar Protein Content and Fiber Crossectional Area of Atrophied Hindlimb Muscles of Rats)

  • 최명애
    • 대한간호학회지
    • /
    • 제27권1호
    • /
    • pp.96-108
    • /
    • 1997
  • The purpose of this study was to determine the effect of endurance training prior to occurrence of muscle atrophy on the mass, myofibrillar protein content and fiber crossectional area of atrophied hindlimb muscles of rats. Adult female Wistar rats were trained prior to occurrence of muscle atrophy induced by hindlimb suspension. Training began on the 1st day for 10min /day at 15m /min on a 0% grade, training exercise increased daily in time and intensity so that by the 4th week rats were running 60min /day, at 34m /min on a i3.5% grade. Wet weight and relative weight of soleus, plantaris and gastrocnemius muscle decreased significantly after seven days of hindlimb suspension. Wet weight and relative weight of soleus tended to increase and that of plantaris and gastrocnemius tended to decrease in the exercise group as compared to the control group. Myofibrillar protein content of soleus and gastrocnemius tended to increase and that of plantaris tended to decrease in the endurance trained group as compared to the control group. Fiber crossectional area of Type I, II fiber in soleus and plantaris muscle tended to increase in the exercise group as compared to the control group. Wet weight and relative weight of soleus. plantaris and gastrocnemius decreased significantly, myofibrillar protein content of soleus, plantaris and gastrocnemius increased in hindlimb suspended rats following endurance training as compared to the control group. There was no change in fiber type percentage and crossectional area of type I and II fiber in soleus muscle and that of type I and IIfiber in plantaris muscle decreased in the hindlimb suspended rats following endurance training as compared to the control group. Wet weight and relative weight of soleus and plantaris tended to increase, that of gastrocnemius increased significantly, myofibrillar protein content of soleus and plantaris muscle increased significantly and that of gastrocnemius tended to increase in the hindlimb suspended rats following endurance training as compared to sedentary rats following endurance training. Crossectional area of type I fiber of soleus muscle tended to increase. that of type I fiber of plantaris muscle increased significantly and that of type II fiber tended to increase in hindlimb suspended rats following endurance training as compared to sedentary rats following endurance training. The results suggest that endurance training prior to occurrence of muscle atrophy can attenuate the decrease of mass, myofibrillar protein content and fiber crossectional area induced by hindlimb suspension.

  • PDF

난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(II) - 공정변수가 복합재의 기계적 성질에 미치는 영향 - (Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(II) - Effect of Process Variables on The Mechanical Properties of Composites -)

  • 윤형운;이필우
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권3호
    • /
    • pp.58-65
    • /
    • 1997
  • This research was carried out to evaluate the effect of process variables on mechanical properties of the wood fiber-thermoplastic fiber composites by turbulent air mixing method. The turbulent air mixer used in this experiment was specially designed in order to mix wood fiber and thermoplastic polypropylene or nylon 6 fiber, and was highly efficient in the mixing of relatively short plastic fiber and wood fiber in a short time without any trouble. The adequate hot - pressing temperature and time in our experimental condition were $190^{\circ}C$ and 9 minutes in 90% wood fiber - 10% polypropylene fiber composite and $220^{\circ}C$ and 9 minutes in 90% wood fiber 10% nylon 6 fiber composite. Both in the wood fiber - polypropylene fiber composite and wood fiber- nylon 6 fiber composite, the mechanical properties improved with the increase of density. Statistically, the density of composite appeared to function as the most significant factor in mechanical properties. Within the 5~15% composition ratios of polypropylene or nylon 6 fiber to wood fiber, the composition ratio showed no significant effect on the mechanical properties. Bending and tensile strength of composite, however, slightly increased with the increase of synthetic fiber content. The increase of mat moisture content showed no significant improvement of mechanical properties both in wood fiber - polypropylene fiber composite and wood fiber nylon 6 fiber composite. Wood fiber - nylon 6 fiber composite was superior in th mechanical strength to wood fiber-polypropylene fiber composite, which may be related to higher melt flow index of nylon 6 fiber(22g/10min) than of polypropylene fiber(4.3g/10min).

  • PDF

탄소섬유강화 질화규소 세라믹스의 마찰마모 특성 (Sliding Wear Properties of Carbon Fiber Reinforced $Si_3N_4$ Ceramics)

  • 박이현;윤한기;김부안;박원조
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.347-351
    • /
    • 2004
  • [ $Si_3N_4$ ] composites have been extensively studied for engineering ceramics, because it has excellent room and high temperature strength, wear resistance properties, good resistance to oxidation, and good thermal and chemical stability. In the present work, carbon short fiber reinforced $Si_3N_4$ ceramics were fabricated by hot press method in $N_2$ atmosphere at $1800^{\circ}C$ using $Al_2O_3\;and\;Y_2O_3$ as sintering additives. Content of carbon short fiber was $0\%,\;0.1\%\;and\;0.3\%$. The composites were evaluated in terms of density, flexural strength and elastic modulus through the 3-point bending test at room temperature. Also, The wear behavior was determined by the pin on disk wear tester using silicon nitride ball. Experimental density and flexural strength decreased with increasing content of carbon fiber. But specific modulus increased with increasing content of carbon fiber. In addition, friction coefficient and specific wear loss decreased with increasing content of carbon short fiber by reason of interfacial defects between matrix and fiber.

  • PDF

유리섬유의 특성이 열가소성 복합재료의 기계적 성질에 미치는 영향 (Effects of the Glass Fiber Characteristics on the Mechanical Properties of Thermoplastic Composite)

  • 이중희;이정권;이경엽
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1697-1702
    • /
    • 2000
  • This study has been performed to investigate the effects of glass fiber characteristics on the mechanical properties of thermoplastic composite. The surface of glass fiber was coated with the silan e to enhance the bonding strength between fiber and matrix. A micro-droplet pull-off test was performed to investigate the influence of the silane concentration on the bonding strength. The maximum bonding strength was observed around 10.8% silane concentration. In order to examine the influence of the fiber length and fiber content on the properties of the composite, the composite materials involving tile fiber lengths of 5mm, 10mm, 15mm 20mm, and 25mm were tested. The composites used contain 20%, 30%, and 40% by weight of glass fibers. Tension and flexural tests were performed to investigate their mechanical properties of the composites. The tensile strength and tensile modulus of the composite increase with increasing the glass fiber content. The tensile modulus increases slightly with increasing the fiber length. The maximum tensile strength is observed around the fiber length of 15-20mm. The flexural modulus and strength also increase slightly with increasing the fiber length.

산채류의 식이섬유 함량과 물리적 특성 (Dietary Fiber Contents and Physical Properties of Wild Vegetables)

  • 박종숙;이원종
    • 한국식품영양과학회지
    • /
    • 제23권1호
    • /
    • pp.120-124
    • /
    • 1994
  • 9종의 산채류를 분석한 결과 건물량으로 33~55%의 식이섬유를 함유하였다. 그 중 달래는 22%의 수용성 식이섬유와 49%의 총 식이섬유를 함유하였고 더덕은 21%의 수용성 식이섬유와 55%의 총 식이섬유를 함유하였다. 야생더덕은 재배더덕에 비하여 8% 더 많은 식이섬유를 함유하였다. 산채류의 수분 흡착력은 밀기울이나 콩식이섬유보다 높았으나 oil 흡착력은 낮았다. 산채류를 분쇄하여 여과 처리한 결과 더덕의 경우 총 식이섬유 함량이 55%에서 83%로, 달래의 경우 49%에서 69%로 증가하였다.

  • PDF

섬유혼합 보강토의 공학적 특성에 관한 실험연구 (The Experimental Study on Engineering Properties of Fiber - Reinforced Soil)

  • 조덕삼;김진만
    • 한국지반공학회지:지반
    • /
    • 제11권2호
    • /
    • pp.107-120
    • /
    • 1995
  • 섬유혼합 보강토는 흙과 섬유의 마찰력에 의해 유발되는 섬유의 인장력을 이용하여 흙의 역학적 특성을 개선시킨 새로운 형태의 보강토이다. 일반적으로 섬유혼한 보강토의 공학적 특성은 흙의 단위 중량, 입자크기, 입도분포와 섬유의 길이, 인장강도, 혼합률 등에 영향을 받는 것으로 알려져 있다. 본 연구에서는 국내에서 많이 발생하는 건설잔토 종류별로 섬유의 형태, 직경 및 길이, 섬유 혼합률, 시멘트 홉합률, 양생기간 등을 변화시켜가며 섬유혼합 보강토의 다짐특성, 전단특성 및 투수특성 등을 고찰하고, 이를 토대로 섬유혼합 보강토의 공학적 특성에 미치는 섬유 보강 효과를 규명하였다. 또한, 실험에 사용된 흙과 섬유에 대한 최적의 섬유길이와 섬유혼합률의 범위에 대한 평가를 수행하였다.

  • PDF

Micro-Fiber의 혼합에 의한 해성준설점토의 보강에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE REINFORCING EFFECT 01 MARINE DREDGING CLAY MIXED WITH MICRO-FIBER)

  • 박영목;허상목
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.143-155
    • /
    • 1999
  • An experimental study has been carried out to investigate the reinforcing effect of marine dredging clay(MDC) mixed with the Micro-Fiber(MF). A series of laboratory tests was performed using specimens of MDC alone and MDC with MF by means of uniaxial and triaxial compression test. In the test programme, three stages of water content of MDC were chosen according to the elapsed time after dredging, and content and length of MF were considered as important factors for reinforcing effect. And the developed strength due to curing was measured both in MDC and composite. The enhancement of strength of composite was found to be increased with the increasing content and length of MF, and curing time, and with decreasing water content of MDC. An additional study has been made for in-situ trafficability on the soft reclaimed ground by MDC due to high water content. It was found that the waste lime was to be applicable for this purpose to get a reinforcing effect of MDC. A further study would lead to the better understanding of the reinforcing mechanism of the composite.

  • PDF

Himalayan dock (Rumex nepalensis): the flip side of obnoxious weed

  • Wangchuk, Kesang
    • Journal of Animal Science and Technology
    • /
    • 제57권11호
    • /
    • pp.34.1-34.5
    • /
    • 2015
  • Himalayan dock (Rumex nepalensis) was evaluated for forage value and antinutrients under three, five and seven weeks cutting intervals in the temperate environment. Dry matter (DM) content was measured for each cutting interval. Forage quality parameters such as Crude Protein (CP), Acid Detergent fiber (ADF), Neutral Detergent Fiber (NDF), Calcium (Ca) and Phosphorus (P) were analyzed. Plants with seven weeks cutting interval gave higher DM yield. CP and P content were significantly higher for three weeks cutting intervals. Average CP contents were 31.38 %, 30.73 % and 27.32 % and average P content 0.58 %, 0.52 % and 0.51 % for three, five and seven weeks cutting intervals, respectively. Ca content did not differ significantly between cutting intervals. The average Ca content were 0.91 %, 0.90 % and 90 %, for three, five and seven weeks cutting intervals, respectively. Tannin and mimosine contents were not significantly different between cutting intervals. Average tannin contents were 1.32 %, 1.27 % and 1.26 % and mimosine 0.38 %, 0.30 % and 0.28 % for three, five and seven weeks cutting intervals, respectively. The study concluded that R. nepalensis could be a potential source of protein for livestock. The study also suggests seven weeks harvesting interval to provide plants with high dry matter yield, high forage quality and very low levels of anti-nutrients.

The Relationship between Muscle Fiber Composition and Pork Taste-traits Assessed by Electronic Tongue System

  • Hwang, Young-Hwa;Ismail, Ishamri;Joo, Seon-Tea
    • 한국축산식품학회지
    • /
    • 제38권6호
    • /
    • pp.1305-1314
    • /
    • 2018
  • To investigate relationships of electronic taste-traits with muscle fiber type composition (FTC) and contents of nucleotides, porcine longissimus lumborum (LL), psoas major (PM), and infra spinam (IS) muscles were obtained from eight castrated LYD pigs. FTC and taste-traits in these three porcine muscles were measured by histochemical analysis and electronic tongue system, respectively. IS had significantly higher proportion of type I fibers while LL had significantly higher proportion of type IIB than other muscles (p<0.05). IS had the highest inosine monophosphate (IMP) content while LL had the lowest IMP content (p<0.05). In contrast, LL had significantly higher hypoxanthine content compared to PM and IS (both p<0.05). For taste-traits, IS had significantly higher umami and richness values but lower sourness value than LL and PM (p<0.05). Sourness and astringency values of LL were significantly higher than those of IS (p<0.05). The proportion of type IIB fiber was positively correlated with sourness and astringency but negatively correlated with saltiness. These results suggest that sourness and astringency tastes are increased with increasing proportions of type IIB fibers in porcine muscles due to increase of hypoxanthine content. These results also imply that umami and richness tastes are increased with increasing contents of type I and IIA fibers because of increased IMP content in porcine muscles.

Effects of Physically Effective Neutral Detergent Fiber Content on Intake, Digestibility, and Chewing Activity in Fattening Heifer Fed Total Mixed Ration

  • Oh, Mi Rae;Hong, Heeok;Li, Hong Liang;Jeon, Byong Tae;Choi, Cheong Hee;Ding, Yu Ling;Tang, Yu Jiao;Kim, Eun Kyung;Jang, Se Young;Seong, Hye Jin;Moon, Sang Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권12호
    • /
    • pp.1719-1724
    • /
    • 2016
  • The objective of this study was to determine the effects of physically effective neutral detergent fiber (peNDF) content in total mixed ration (TMR) on dry matter intake, digestibility, and chewing activity in fattening Hanwoo (Bos taurus coreanae) heifers. The experiment was designed as a replicated $3{\times}3$ Latin square using 12 heifers. Fattening heifers were offered one of three diets [high (T1), medium (T2), and low (T3) peNDF] obtained by different mixing times (3, 10, and 25 min) for the same TMR feed. The peNDF content of TMR was determined by multiplying the proportion of dry matter retained by a 1.18 mm-screen in a Penn State Particle Separator by the dietary NDF content. The $peNDF_{1.18}$ content was 30.36%, 29.20%, and 27.50% for the T1, T2, and T3 diets, respectively (p<0.05). Dry matter intake was not affected by peNDF content in TMR. Total weight gain in T1 group was significantly higher (p<0.05) than in T2 and T3 groups. However, weight gain did not differ between T2 and T3 groups. The feed conversion ratio decreased with an increase in the peNDF content (T1: 12.18, T2: 14.17, and T3: 14.01 g/g). An increase in the peNDF content of TMR was associated with a linear increase in the digestibility of dry matter, crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber (p<0.05). Also, an increase in peNDF content of the TMR resulted in a linear increase in the number of chews in eating and ruminating (p<0.05), and consequently in the number of total chews (p<0.05). These results indicate that peNDF content affects digestibility and chewing activity. Consequently, the peNDF content of TMR should be considered for improving feed efficiency, digestibility, body weight gain, and performance in fattening heifers.