• 제목/요약/키워드: fiber beam element

검색결과 189건 처리시간 0.027초

An investigation into the shear strength of SFRC beams with opening in web using NFEM

  • Karimi, Mohammad;Hashemia, Seyed Hamid
    • Computers and Concrete
    • /
    • 제21권5호
    • /
    • pp.539-546
    • /
    • 2018
  • Making a transverse opening in concrete beams in order to accommodate utility services through the member instead of below or above of that, sometimes may be necessary. It is obvious that inclusions of an opening in a beam decreases its flexural and shear strengths. Fabricated steel bars are usually used to increase the capacity of the opening section, but details of reinforcements around the opening are dense and complex resulting in laborious pouring and setup process. The goal of this study was to investigate the possibility of using steel fibers in concrete mixture instead of complex reinforcement detailing order to strengthen opening section. Nonlinear finite element method was employed to investigate the behavior of steel fiber reinforced concrete beams. The numerical models were validated by comparison with experimental measurements tested by other investigators and then used to study the influence of fiber length, fiber aspect ratio and fiber content on the shear performance of SFRC slender beams with opening. Finally, it was concluded that the predicted shear strength enhancement is considerably influenced by use of steel fibers in concrete mixture but the effect of fiber length and fiber aspect ratio wasn't significant.

Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars

  • Yoo, Doo-Yeol;Banthia, Nemkumar
    • Computers and Concrete
    • /
    • 제16권5호
    • /
    • pp.759-774
    • /
    • 2015
  • This study simulates the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams reinforced with steel and glass fiber-reinforced polymer (GFRP) rebars. For this, micromechanics-based modeling was first carried out on the basis of single fiber pullout models considering inclination angle. Two different tension-softening curves (TSCs) with the assumptions of 2-dimensional (2-D) and 3-dimensional (3-D) random fiber orientations were obtained from the micromechanics-based modeling, and linear elastic compressive and tensile models before the occurrence of cracks were obtained from the mechanical tests and rule of mixture. Finite element analysis incorporating smeared crack model was used due to the multiple cracking behaviors of structural UHPFRC beams, and the characteristic length of two times the element width (or two times the average crack spacing at the peak load) was suggested as a result of parametric study. Analytical results showed that the assumption of 2-D random fiber orientation is appropriate to a non-reinforced UHPFRC beam, whereas the assumption of 3-D random fiber orientation is suitable for UHPFRC beams reinforced with steel and GFRP rebars due to disorder of fiber alignment from the internal reinforcements. The micromechanics-based finite element analysis also well predicted the serviceability deflections of UHPFRC beams with GFRP rebars and hybrid reinforcements.

광섬유 브래그 격자를 이용한 촉각 힘 센서의 개발 (Development of Tactile Force Sensor using Fiber Bragg Grating)

  • 김만섭;이정주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.811-816
    • /
    • 2004
  • The tactile force sensor was studied using Fiber Bragg Grating (FBG). The FBG is able to multiplex easily and is immune to electromagnetic environment. A sensor frame was designed to a cantilever beam type. Strain of a beam is related with the peak shift of a bragg wavelength. Finite Element Method (FEM) was used for getting an appropriate thickness from 0.2 mm to 0.3 mm thick. FEM results showed that 0.3 mm thick was suitable for the force range 10 N. The force resolutions of 0.039 N and 0.113 N were obtained with optical spectrum analyser and tunable Fabry-Perot filter, respectively.

  • PDF

적층복합 T형 보의 휨 해석 (Flexural Analysis of Laminated Composite T-Beams)

  • 백성용
    • 한국강구조학회 논문집
    • /
    • 제26권5호
    • /
    • pp.397-405
    • /
    • 2014
  • 본 연구에서는 적층복합 T형 보의 휨 해석을 위해 전단에 유연한 보 요소를 제안한다. 1차 전단변형 보 이론을 사용해 유도된 보 요소는 ? 전단변형과 재료의 비등방성 성질에 따른 모든 연계성을 고려한다. 지배방정식의 해를 구하기 위해 절점 당 7개의 자유도를 갖는 2절점, 3절점, 4절점의 세 가지 보 요소를 제안한다. 제안된 보 요소의 활용성과 정확성을 검증하기 위해 등분포하중과 집중하중을 받는 대칭 및 역대칭 앵글프라이 복합 T형 보에 대해 수치해석을 수행한다. 다른 적층순서에 대해 화이버 각과 전단변형의 영향을 조사한다. 적층 복합 T형 보의 휨 해석에 대해 3절점과 4절점 보 요소의 유효성을 입증하였다.

Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement

  • Ansari, Mokhtar;Daneshjoo, Farhad;Safiey, Amir;Hamzehkolaei, Naser Safaeian;Sorkhou, Maryam
    • Structural Engineering and Mechanics
    • /
    • 제69권3호
    • /
    • pp.243-255
    • /
    • 2019
  • Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations.

비선형 지진 해석을 위한 보-기둥 요소 (Beam-Column Element Applicable to Nonlinear Seismic Analysis)

  • 김기동;고만기;이상수
    • 한국강구조학회 논문집
    • /
    • 제9권4호통권33호
    • /
    • pp.557-578
    • /
    • 1997
  • 이 연구의 목적은 매우 큰 지진하에 휨 모멘트에 의해서만 항복하는 부재와 휨 모멘트와 축 방향력에 의하여 항복하는 부재를 모델 할 수 있는 보-기둥 요소를 개발하는데 있다. 이 요소는 직렬 힌지 모델 (one-component series hinge model)로 간주 될 수 있으며, 축 방향 강성도 변화와 축 방향 소성 변형을 고려 할 수 있고 또한 단조, 주기, 임의 하중 등을 적절히 모델 할 수 있는 경화 법칙 (hardening rules)을 고려한다. 일반적으로 이 요소는 실험 결과 및 화이버 모델 (fiber model)에 비교하여 볼 때 기존의 이직선 힌지 모델 (bilinear hinge model)보다 우수한 거동을 보였고 모멘트 저항 뼈대 구조물의 강 부재의 보-기둥 거동을 적절하게 모델 할 수 있었다. 개발된 보-기둥 요소는 지진 하중하에서 구조물의 전체적인 거동과 설계에 필요한 국부 변형량을 기존의 이직선 힌지 모델 보다 매우 정확하게 예측 할 수 있다.

  • PDF

Numerical investigations of reinforcement concrete beams with different types of FRP bars

  • Azza M. Al-Ashmawy;Osman Shallan;Tharwat A. Sakr;Hanaa E. Abd-EL-Mottaleb
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.599-608
    • /
    • 2023
  • The present study is focused on instigation of the nonlinear mechanical behavior of reinforced concrete beams considering different types of FRP bars through nonlinear finite element simulations. To explore the impact of the FRP reinforcement type and geometry on the nonlinear mechanical behavior of reinforced beam, intensive parametric studies are carried out and discussed. Twenty models were carried out based on the finite element software (ABAQUS). The concrete damage plasticity model was considered. Four types of fiber polymer bars, CFRP, GFRP, AFRP and BFRP as longitudinal reinforcement for concrete beam were used. The validation of numerical results was confirmed by experimental as well as numerical results, then the parametric study was conducted to evaluate the effect of change in different parameters, such as bar diameter size, type of FRP bars and shear span length. All results were analyzed and discussed through, load-deflection diagram. The results showed that the use of FRP bars in rebar concrete beam improves the beam stiffness and enhance the ultimate load capacity. The load capacity enhanced in the range of (20.44-244.47%) when using different types of FRP bars. The load-carrying capacity of beams reinforced with CFRP is the highest one, beams reinforced with AFRP is higher than that reinforced with BFRP but beams reinforced with GFRP recorded the lowest load of capacity compered with other beams reinforced with FRP Bars.

Photonic True-Time Delay for Phased-Array Antenna System using Dispersion Compensating Module and a Multiwavelength Fiber Laser

  • Jeon, Hyun-Bin;Lee, Hojoon
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.406-413
    • /
    • 2014
  • An optical true-time delay beam-forming system using a tunable dispersion compensating module (DCM) for dense-wavelength division modulation (DWDM) and a multiwavelength fiber ring laser for a phased array antenna is proposed. The multiwavelength fiber ring laser has one output that includes four wavelengths; and four outputs that include only single-wavelength. The advantage of such a multiwavelength fiber ring laser is that it minimizes the number of devices in the phased array antenna system. The time delays according to wavelengths, which are assigned for each antenna element, are obtained from the tunable DCM. The tunable DCM based on a temperature adjustable Fabry-Perot etalon is used. As an experimental result, a DCM could be used to obtain the change of the beam angle by adjusting the dispersion value of the DCM at the fixed lasing wavelengths of the fiber ring laser in the proposed optical true-time delay.

섬유요소를 이용한 교량의 비선형 지진응답해석 (Earthquake Response Analysis of Bridges Using Fiber Element Method)

  • 변순주;임정순
    • 한국방재학회 논문집
    • /
    • 제6권3호
    • /
    • pp.29-35
    • /
    • 2006
  • 교량의 지진응답해석시 단면의 비선형 거동특성에 따른 휨변형을 정밀하게 구현하기 위해 섬유요소를 이용한 해석이 수행되었다. 2주형 다주교각을 섬유요소로 모델링하여 지진하중에 대한 비선형 정적해석을 수행하였으며 소성힌지 영역에서의 파괴 메카니즘을 분석하였다. 비선형 정적해석으로 얻어진 하중-변위 곡선을 이용하여 역량스펙트럼 방법에 의한 지진응답해석을 수행되었다. 또한 교량 전체 시스템을 섬유요소를 이용하여 모델링하고 동일한 응답스펙트럼을 가지는 지진파를 입력하여 비선형 시간이력 해석을 수행되었으며 이는 역량스펙트럼 방법과 유사한 결과를 보인다.

Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites

  • Mohammed, Thaer Jasim;Abu Bakar, B.H.;Bunnori, N. Muhamad
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.123-136
    • /
    • 2015
  • The proposed techniques to repair concrete members such as steel plates, fiber-reinforced polymers or concrete have important deficiencies in adherence and durability. The use of ultra high performance fiber concrete (UHPFC) can overtake effectively these problems. In this paper, the possibility of using UHPFC to strengthen reinforced concrete beams under torsion is investigated. Seven specimens of concrete beams reinforced with longitudinal and transverse reinforcements. One of these beams consider as control specimen while the others was strengthened by UHPFC on four, three, and two sides. This study includes experimental results of all beams with different types of configurations and thickness of UHPFC. As well as, finite element analysis was conducted in tandem with experimental test. Results reveal the effectiveness of the proposed technique at cracking and ultimate torque for different beam strengthening configurations, torque - twist graphs and crack patterns. The UHPFC can generally be used as an effective external torsional reinforcement for RC beams. It was noted that the behavior of the beams strengthen with UHPFC are better than the control beams. This increase was proportional to the retrofitted beam sides. The use of UHPFC had effect in delaying the growth of crack formation. The finite element analysis is reasonably agreement with the experimental data.