• Title/Summary/Keyword: fiber Bragg grating (FBG) sensors

Search Result 172, Processing Time 0.02 seconds

Development of a Convergence Monitoring Method for Cylindrical Structures by Optical Fiber Bragg Grating Sensor (광섬유 FBG센서를 이용한 원주형 구조물의 2차원 상대변위 모니터링기법 개발)

  • Lho, Byeong-Cheol;Kim , Jong-Woo;Kang , Suck-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.160-166
    • /
    • 2006
  • Optical Fiber Bragg Grating sensor has a good performance to measure microscopic displacement which can measure strain of lining concrete and cylindrical structure like high intensity containment building and it can present many advantages like a corrosion resistance from the durability point of view. Then it can measure plane geometrical displacement of cylindrical structures with two-way displacement FBG sensor module. According to the test result, measurement of FBG sensor is better performance than other electric sensor system and 2D-level measurement. As a test result, Resolution of the two-way displacement sensor module with FBG sensors are more 10 times than other LVDT or 2D surveying.

Behavior of Strut in Concrete-filled FRP PSC Bridge using FBG Sensors (FBG센서를 이용한 콘크리트 충진 FRP 스트럿 보강 PSC 교량의 스트럿 거동 분석)

  • Chung, Won-Seok;Kang, Dong-Hoon;An, Zu-Og
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.11-15
    • /
    • 2009
  • Recently, a new PSC (Prestressed Concrete) bridge system, which is supported by Concrete-filled fiber-reinforced polymer (CFFRP) strut, has been introduced. This bridge is able to reduce self-weight and increase the width of traditional PSC bridges. However, no relevant research has been reported on local behavior of CFFRP strut in the bridge system. The purpose of this study is to investigate local behavior of CFFRP struts using fiber Bragg grating (FBG) sensors. Field tests were performed to examine the hoop strains and longitudinal strains of the FRP strut under various lateral positions and velocities of a test truck. It has been observed that CFFRP strut is under compression regardless of vehicle speed and location. However, the CFFRP strut is sensitive to the lateral position of vehicles in terms of strain magnitude. Results also indicated that the FBG sensors can faithfully record the hoop and longitudinal strains of the FRP strut without electro-magnetic interference.

Feasibility Study to Actively Compensate Deformations of Composite Structure in a Space Environment

  • Farinelli, Ciro;Kim, Hong-Il;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.221-228
    • /
    • 2012
  • An active compensation method for the deformation of composite structures using additional controllable metal parts is proposed, and its feasibility is experimentally investigated in a simulated space environment. Composite specimens are tested in a vacuum chamber, which is able to maintain pressure on the order of 10-3 torr and interior temperature in the range of ${\pm}30^{\circ}C$. The displacement-measuring interferometer system, which consists of a heterodyne HeNe laser and an interferometer, is used to measure the displacement of the whole structure. Meanwhile, the strain of the composite part and temperature of both parts are measured by fiber Bragg grating sensors and thermistors, respectively. The displacement of the composite structure is maintained within a tolerance of ${\pm}1{\mu}m$ by controlling the elongation of the metal part, which is bonded to the end of the composite part. Also, the possibility of fiber Bragg grating sensors as control input sensors is successfully demonstrated using a proper corrective factor based on the specimen temperature gradient data.

A Quasi-Distributed Fiber-Optic Sensor System using an InGaAs PD Array and FBG Sensors for the Safety Monitoring of Electric Power Systems (InGaAs PD 어레이와 광섬유 격자를 이용한 준분배형 전력설비 안전진단 시스템)

  • Kim, Hyun-Jin;Park, Hyoung-Jun;Song, Min-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.86-91
    • /
    • 2010
  • We constructed a quasi-distributed fiber-optic sensor network for the safety monitoring in power systems. It is possible to construct many of FBG sensors in a line and to be immune from electromagnetic noise. For demodulation analysis of reflected wavelength from FBG sensor, we proposed a simple and fast system using a InGaAs photo-diode array and a holographic diffraction grating. For accuracy improvement of the proposed demodulation system, we applied a Gaussian line-fitting algorithm. We obtained about 4[pm] of wavelength resolution and stability.

Displace Measurement of the Top of Bridge Pier Using Long gauge Fiber Optic Sensor (긴 게이지길이 광섬유 FBG센서를 이용한 교각상부 거동 혹정)

  • Ki Ki-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.71-76
    • /
    • 2006
  • In this paper, a long gauge Fiber Bragg Grating (FBG) sensor system is described and long gauge FBGs are well, suited for measuring the upper parts of the bridge piers under the extremely severe movement conditions. In the experiments, we used more than 30m long FBG sensors to measure the movement of top part of the bridge piers which are separated from the main bridge by cutting the decks. With the actuator, the deck and girders were pushed and released. We checked the movement of the top of the pier while releasing the pressure of the actuator with the long gauge fiber sensor. In order to measure the movement of the upper part of the pier, the reference point must be outside of the pier. Using the optical fiber sensors, one end of the sensor is attached to the top of the pier and the other end is attached to the bottom of the next pier. The fiber sensors showed good response to the release loading and we could calculate the movement of the top part of the pear.

  • PDF

A Numerical Study on the Strain Based Monitoring Method for Lateral Structural Response of Buildings using FBG Sensors (FBG를 이용한 변형률 기반 건물의 횡방향 구조반응 모니터링 기법에 관한 해석적 연구)

  • Choi, Se Woon;Park, Keunhyoung;Kim, Yousok;Park, Hyo Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.263-269
    • /
    • 2013
  • In this study, the strain based monitoring method to evaluate the lateral structural response of buildings is presented and an applicability of the proposed method is confirmed through the numerical study. It is assumed that the fiber Bragg grating(FBG) strain sensor is employed to measure the strain response of members due to the excellent properties such as multiplexing, and higher sampling frequency. These properties of FBG sensors is proper for buildings the a lot of sensors are required to monitor the reponses of those. FBG sensors measure the strain response of vertical members and are employed to calculate the curvatures of members using the measured strain responses. Then the lateral displacement, and lateral acceleration is evaluated based on the curvatures of vertical members. Additionally, these dynamic responses of buildings are used to evaluate the dynamic properties of buildings such as the natural frequencies and mode shapes using the frequency domain decomposition(FDD) method. Through the application of nine-story steel moment frame example structure, it is confirmed that the proposed method is appropriate to evaluate the lateral structural responses and dynamic properties of buildings.

Residual Strain Characteristics of Nickel-coated FBG Sensors (니켈이 코팅된 FBG 센서의 잔류 변형률 특성)

  • Cho, Won-Jae;Hwang, A-Reum;Kim, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.613-620
    • /
    • 2017
  • A metal-coated FBG (fiber Bragg grating) sensor has a memory effect, which can recall the maximum strains experienced by the structure. In this study, a nickel-coated FBG sensor was fabricated through electroless (i.e., chemical plating) and electroplating. A thickness of approximately $43{\mu}m$ of a nickel layer was achieved. Then, we conducted cyclic loading tests for the fabricated nickel-coated FBG sensors to verify their capability to produce residual strains. The results revealed that the residual strain induced by the nickel coating linearly increased with an increase in the maximum strain experienced by the sensor. Therefore, we verified that a nickel-coated FBG sensor has a memory effect. The fabrication methods and the results of the cycle loading test will provide basic information and guidelines in the design of a nickel-coated FBG sensor when it is applied in the development of structural health monitoring techniques.

Measuring Deformation of Cable in the Tensegrity Structure by Optical FBG Sensor (FBG센서를 이용한 텐서그리티 구조의 변형 계측)

  • Lee, Seung-Jae;Lee, Chang-Woo;Ju, Gi-Su
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.189-194
    • /
    • 2008
  • The main object of this paper is that it's possible to monitoring the deformation of cable in the tensegrity structure. always monitoring system of Fiber Bragg Grating(FBG)Sensor is described. The measurement of parts on the cable is very important. We make an experiment with measuring deformation of cable in the tensegrity structure to the pressure conditions. In the result of experiment, the fiber sensors showed good response to the pressure conditions. Therefore, We could calculate the deformation of cable structure and be possible health monitoring of the tensegrity structure.

  • PDF

FBG sensor system for condition monitoring of wind turbine blades (풍력터빈 블레이드 상태 감시용 광섬유격자 센서시스템)

  • Kim, Dae-Gil;Kim, Hyunjin;Song, Minho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.75-82
    • /
    • 2013
  • We propose a fiber grating sensor system for condition monitoring of large scale wind turbine blades. For the feasibility test of the proposed sensor system, a down-scaled wind turbine has been constructed and experimented. Fiber grating sensors were attached on a blade surface for distributed strain and temperature measurements. An optical rotary joint was used to transmit optical signals between the FBG sensor array and the signal processing unit. Instead of broadband light source, we used a wavelength-swept fiber laser to obtain high output power density. A spectrometer demodulation is used to alleviate the nonlinear wavelength tuning problem of the laser source. With the proposed sensor system we could measure dynamic strain and temperature profiles at multi-positions of rotating wind turbine blades.

SVR model reconstruction for the reliability of FBG sensor network based on the CFRP impact monitoring

  • Zhang, Xiaoli;Liang, Dakai;Zeng, Jie;Lu, Jiyun
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.145-158
    • /
    • 2014
  • The objective of this study is to improve the survivability and reliability of the FBG sensor network in the structural health monitoring (SHM) system. Therefore, a model reconstruction soft computing recognition algorithm based on support vector regression (SVR) is proposed to achieve the high reliability of the FBG sensor network, and the grid search algorithm is used to optimize the parameters of SVR model. Furthermore, in order to demonstrate the effectiveness of the proposed model reconstruction algorithm, a SHM system based on an eight-point fiber Bragg grating (FBG) sensor network is designed to monitor the foreign-object low velocity impact of a CFRP composite plate. Simultaneously, some sensors data are neglected to simulate different kinds of FBG sensor network failure modes, the predicting results are compared with non-reconstruction for the same failure mode. The comparative results indicate that the performance of the model reconstruction recognition algorithm based on SVR has more excellence than that of non-reconstruction, and the model reconstruction algorithm almost keeps the consistent predicting accuracy when no sensor, one sensor and two sensors are invalid in the FBG sensor network, thus the reliability is improved when there are FBG sensors are invalid in the structural health monitoring system.